Suppr超能文献

一种用于检测踝关节骨软骨损伤的新型超声技术:参数及可行性研究。

A novel ultrasound technique for detection of osteochondral defects in the ankle joint: a parametric and feasibility study.

作者信息

Sarkalkan Nazli, Loeve Arjo J, van Dongen Koen W A, Tuijthof Gabrielle J M, Zadpoor Amir A

机构信息

Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.

Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology (TU Delft), Lorentzweg 1, Delft 2628 CJ, The Netherlands.

出版信息

Sensors (Basel). 2014 Dec 24;15(1):148-65. doi: 10.3390/s150100148.

Abstract

(Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced.

摘要

目前,踝关节的(骨)软骨损伤(OCDs)诊断方式在长期随访中使用不便。超声(US)成像作为一种经济高效且非侵入性的替代方法,鉴别OCDs的能力有限。我们旨在开发一种基于超声在踝关节中传播的新诊断技术。当超声信号偏离与健康关节相关的参考信号时,即可识别出OCDs的存在。利用经过实验验证的踝关节二维时域有限差分模型研究了该技术的可行性。实验与模拟的归一化最大互相关系数为0.97。评估了与踝关节、超声换能器和OCDs相关变量的影响。关节间隙宽度和换能器方向的变化对参考信号产生了显著改变:归一化均方根误差分别在6.29%至65.25%以及19.59%至8064.2%之间。结果表明,如果能够减少其他参数(即与踝关节和超声换能器相关的参数)的影响,新技术可用于检测OCDs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d5f/4327012/ea945ae6955f/sensors-15-00148f1.jpg

相似文献

2
Feasibility of ultrasound imaging of osteochondral defects in the ankle: a clinical pilot study.
Ultrasound Med Biol. 2014 Oct;40(10):2530-6. doi: 10.1016/j.ultrasmedbio.2014.03.022. Epub 2014 Jul 9.
5
Ankle morphometry evaluated using a new semi-automated technique based on X-ray pictures.
Clin Biomech (Bristol). 2005 Mar;20(3):307-11. doi: 10.1016/j.clinbiomech.2004.11.009.
6
Determination of consistent patterns of range of motion in the ankle joint with a computed tomography stress-test.
Clin Biomech (Bristol). 2009 Jul;24(6):517-23. doi: 10.1016/j.clinbiomech.2009.03.004. Epub 2009 Apr 7.
7
Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.
Phys Med Biol. 2010 Aug 21;55(16):4839-59. doi: 10.1088/0031-9155/55/16/014. Epub 2010 Aug 3.
8
Bone shape difference between control and osteochondral defect groups of the ankle joint.
Osteoarthritis Cartilage. 2016 Dec;24(12):2108-2115. doi: 10.1016/j.joca.2016.07.015. Epub 2016 Aug 3.
9
US of the ankle: technique, anatomy, and diagnosis of pathologic conditions.
Radiographics. 1998 Mar-Apr;18(2):325-40. doi: 10.1148/radiographics.18.2.9536481.

引用本文的文献

1
Near-Infrared Spectral Similarity between Ex Vivo Porcine and In Vivo Human Tissue.
Life (Basel). 2023 Jan 28;13(2):357. doi: 10.3390/life13020357.
2
Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities.
World J Orthop. 2015 Dec 18;6(11):944-53. doi: 10.5312/wjo.v6.i11.944.
3
Fracture of human femur tissue monitored by acoustic emission sensors.
Sensors (Basel). 2015 Mar 10;15(3):5803-19. doi: 10.3390/s150305803.

本文引用的文献

1
Feasibility of ultrasound imaging of osteochondral defects in the ankle: a clinical pilot study.
Ultrasound Med Biol. 2014 Oct;40(10):2530-6. doi: 10.1016/j.ultrasmedbio.2014.03.022. Epub 2014 Jul 9.
2
Treatment principles for osteochondral lesions in foot and ankle.
Int Orthop. 2013 Sep;37(9):1697-706. doi: 10.1007/s00264-013-2076-1. Epub 2013 Aug 28.
3
Sensitivity and specificity of ultrasound in detecting (osteo)chondral defects: a cadaveric study.
Ultrasound Med Biol. 2013 Aug;39(8):1368-75. doi: 10.1016/j.ultrasmedbio.2013.02.011. Epub 2013 May 24.
5
Magnetic resonance imaging features of osteochondral lesions of the talus.
Foot Ankle Int. 2012 Jul;33(7):591-7. doi: 10.3113/FAI.2012.0591.
6
The epidemiology of ankle sprains in the United States.
J Bone Joint Surg Am. 2010 Oct 6;92(13):2279-84. doi: 10.2106/JBJS.I.01537.
7
Modelling the propagation of ultrasound in the joint space of a human knee.
Ultrasound Med Biol. 2010 Oct;36(10):1736-45. doi: 10.1016/j.ultrasmedbio.2010.06.017.
9
2-D finite difference time domain model of ultrasound reflection from normal and osteoarthritic human articular cartilage surface.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Apr;57(4):892-9. doi: 10.1109/TUFFC.2010.1493.
10
Osteochondral defects in the ankle: why painful?
Knee Surg Sports Traumatol Arthrosc. 2010 May;18(5):570-80. doi: 10.1007/s00167-010-1064-x. Epub 2010 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验