Suppr超能文献

使用最先进的飞行时间PET/CT系统和小体素重建技术提高小病变的检测能力。

Improving the detection of small lesions using a state-of-the-art time-of-flight PET/CT system and small-voxel reconstructions.

作者信息

Koopman Daniëlle, van Dalen Jorn A, Lagerweij Martine C M, Arkies Hester, de Boer Jaep, Oostdijk Ad H J, Slump Cornelis H, Jager Pieter L

机构信息

MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands Department of Nuclear Medicine, Isala Hospital, Zwolle, The Netherlands; and

Department of Medical Physics, Isala Hospital, Zwolle, The Netherlands.

出版信息

J Nucl Med Technol. 2015 Mar;43(1):21-7. doi: 10.2967/jnmt.114.147215. Epub 2015 Jan 22.

Abstract

UNLABELLED

A major disadvantage of (18)F-FDG PET involves poor detection of small lesions and lesions with low metabolism, caused by limited spatial resolution and relatively large image voxel size. As spatial resolution and sensitivity are better in new PET systems, it is expected that small-lesion detection could be improved using smaller voxels. The aim of this study was to test this hypothesis using a state-of-the-art time-of-flight PET/CT device.

METHODS

(18)F-FDG PET scans of 2 image-quality phantoms (sphere sizes, 4-37 mm) and 39 consecutive patients with lung cancer were analyzed on a time-of-flight PET/CT system. Images were iteratively reconstructed with standard 4 × 4 × 4 mm voxels and smaller 2 × 2 × 2 mm voxels. For the phantom study, we determined contrast-recovery coefficients and signal-to-noise ratios (SNRs). For the patient study, (18)F-FDG PET-positive lesions in the chest and upper abdomen with a volume less than 3.0 mL (diameter, <18 mm) were included. Lesion mean and maximum standardized uptake values (SUVmean and SUVmax, respectively) were determined in both image sets. SNRs were determined by comparing SUVmax and SUVmean with background noise levels. A subanalysis was performed for lesions less than 0.75 mL (diameter, <11 mm). For qualitative analysis of patient data, 3 experienced nuclear medicine physicians gave their preference after visual side-by-side analysis.

RESULTS

For phantom spheres 13 mm or less, we found higher contrast-recovery coefficients and SNRs using small-voxel reconstructions. For 66 included (18)F-FDG PET-positive lesions, the average increase in SUVmean and SUVmax using the small-voxel images was 17% and 32%, respectively (P < 0.01). For lesions less than 0.75 mL (21 in total), the average increase was 21% and 44%, respectively. Moreover, averaged over all lesions, the mean and maximum SNR increased by 20% and 27%, respectively (P < 0.01). For lesions less than 0.75 mL, these values increased up to 23% and 46%, respectively. The physicians preferred the small-voxel reconstructions in 76% of cases.

CONCLUSION

Supported by a phantom study, there was a visual preference toward (18)F-FDG PET images reconstructed with 2 × 2 × 2 mm voxels and a profound increase in standardized uptake value and SNR for small lesions. Hence, it is expected that small-lesion detection improves using small-voxel reconstructions.

摘要

未标注

(18)F - FDG PET的一个主要缺点是对小病变和低代谢病变的检测能力较差,这是由有限的空间分辨率和相对较大的图像体素尺寸所致。由于新的PET系统在空间分辨率和灵敏度方面表现更优,因此预计使用更小的体素可改善小病变的检测。本研究的目的是使用最先进的飞行时间PET/CT设备来验证这一假设。

方法

在飞行时间PET/CT系统上分析了2个图像质量体模(球体尺寸为4 - 37毫米)以及39例连续肺癌患者的(18)F - FDG PET扫描图像。图像采用标准的4×4×4毫米体素和更小的2×2×2毫米体素进行迭代重建。对于体模研究,我们测定了对比恢复系数和信噪比(SNR)。对于患者研究,纳入了胸部和上腹部体积小于3.0毫升(直径<18毫米)的(18)F - FDG PET阳性病变。在两组图像中均测定了病变的平均和最大标准化摄取值(分别为SUVmean和SUVmax)。通过将SUVmax和SUVmean与背景噪声水平进行比较来确定SNR。对体积小于0.75毫升(直径<11毫米)的病变进行了亚分析。为了对患者数据进行定性分析,3名经验丰富的核医学医师在进行并排视觉分析后给出了他们的偏好。

结果

对于直径为13毫米或更小的体模球体,我们发现使用小体素重建时对比恢复系数和SNR更高。对于纳入的66个(18)F - FDG PET阳性病变,使用小体素图像时SUVmean和SUVmax的平均增幅分别为17%和32%(P < 0.01)。对于体积小于0.75毫升的病变(共21个),平均增幅分别为21%和44%。此外,在所有病变的平均值上,平均SNR和最大SNR分别增加了20%和27%(P < 0.01)。对于体积小于0.75毫升的病变,这些值分别增加至23%和46%。医师在76%的病例中更喜欢小体素重建。

结论

在体模研究的支持下,对于用2×2×2毫米体素重建的(18)F - FDG PET图像存在视觉偏好,并且小病变的标准化摄取值和SNR有显著增加。因此,预计使用小体素重建可改善小病变的检测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验