Kloss Thomas, Canet Léonie, Wschebor Nicolás
IIP, Universidade Federal do Rio Grande do Norte, Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil.
Laboratoire de Physique et Modélisation des Milieux Condensés, Université Joseph Fourier and CNRS, 25, avenue des Martyrs, BP 166, F-38042 Grenoble, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062133. doi: 10.1103/PhysRevE.90.062133. Epub 2014 Dec 22.
We study the anisotropic Kardar-Parisi-Zhang equation using nonperturbative renormalization group methods. In contrast to a previous analysis in the weak-coupling regime, we find the strong-coupling fixed point corresponding to the isotropic rough phase to be always locally stable and unaffected by the anisotropy even at noninteger dimensions. Apart from the well-known weak-coupling and the now well-established isotropic strong-coupling behavior, we find an anisotropic strong-coupling fixed point for nonlinear couplings of opposite signs at noninteger dimensions.
我们使用非微扰重整化群方法研究各向异性的 Kardar-Parisi-Zhang 方程。与之前在弱耦合区域的分析不同,我们发现对应于各向同性粗糙相的强耦合不动点总是局部稳定的,并且即使在非整数维数下也不受各向异性的影响。除了众所周知的弱耦合和现已确立的各向同性强耦合行为外,我们还发现在非整数维数下对于相反符号的非线性耦合存在一个各向异性强耦合不动点。