Suppr超能文献

具有空间相关噪声的各向异性非局部 Kardar-Parisi-Zhang 方程的重整化群分析

Renormalization group analysis of the anisotropic nonlocal kardar-parisi-zhang equation with spatially correlated noise.

作者信息

Jung Y, Park K, Kim HJ, Kim Im

机构信息

Department of Physics, Korea University, Seoul 136-701, Korea.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Aug;62(2 Pt A):1893-6. doi: 10.1103/physreve.62.1893.

Abstract

We study an anisotropic nonlocal Kardar-Parisi-Zhang (KPZ) equation with spatially correlated noise by using the dynamic renormalization group method. When the signs of nonlinear terms in parallel and perpendicular directions are opposite, the correlated noise coupled with the long ranged nature of interaction produces a stable non-KPZ fixed point for d<d(c). For the uncorrelated noise, the roughness and dynamic exponents associated with the stable fixed point are different from those of the isotropic nonlocal KPZ equation, while for the correlated noise the exponents are the same as those of the isotropic case.

摘要

我们使用动态重整化群方法研究了具有空间相关噪声的各向异性非局部 Kardar-Parisi-Zhang(KPZ)方程。当平行和垂直方向上非线性项的符号相反时,与相互作用的长程性质耦合的相关噪声在 d<d(c) 时产生一个稳定的非 KPZ 不动点。对于不相关噪声,与稳定不动点相关的粗糙度和动力学指数不同于各向同性非局部 KPZ 方程的指数,而对于相关噪声,这些指数与各向同性情况的指数相同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验