Romach Y, Müller C, Unden T, Rogers L J, Isoda T, Itoh K M, Markham M, Stacey A, Meijer J, Pezzagna S, Naydenov B, McGuinness L P, Bar-Gill N, Jelezko F
The Racah Institute of Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Institute for Quantum Optics and Center for Integrated Quantum Science and Technology, University of Ulm, D-89081 Ulm, Germany.
Phys Rev Lett. 2015 Jan 9;114(1):017601. doi: 10.1103/PhysRevLett.114.017601. Epub 2015 Jan 6.
We report on the noise spectrum experienced by few nanometer deep nitrogen-vacancy centers in diamond as a function of depth, surface coating, magnetic field and temperature. Analysis reveals a double-Lorentzian noise spectrum consistent with a surface electronic spin bath in the low frequency regime, along with a faster noise source attributed to surface-modified phononic coupling. These results shed new light on the mechanisms responsible for surface noise affecting shallow spins at semiconductor interfaces, and suggests possible directions for further studies. We demonstrate dynamical decoupling from the surface noise, paving the way to applications ranging from nanoscale NMR to quantum networks.
我们报告了金刚石中几纳米深的氮空位中心所经历的噪声谱,它是深度、表面涂层、磁场和温度的函数。分析表明,在低频区域,噪声谱为双洛伦兹分布,这与表面电子自旋浴一致,同时还有一个归因于表面改性声子耦合的更快噪声源。这些结果为影响半导体界面浅自旋的表面噪声机制提供了新的见解,并为进一步研究指明了可能的方向。我们展示了与表面噪声的动态解耦,为从纳米级核磁共振到量子网络等应用铺平了道路。