Suppr超能文献

用于量子比特操作可变时间序列的小波相关噪声分析

Wavelet correlation noise analysis for qubit operation variable time series.

作者信息

Seedhouse Amanda E, Stuyck Nard Dumoulin, Serrano Santiago, Gilbert Will, Huang Jonathan Yue, Hudson Fay E, Itoh Kohei M, Laucht Arne, Lim Wee Han, Yang Chih Hwan, Tanttu Tuomo, Dzurak Andrew S, Saraiva Andre

机构信息

School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, 2052, Australia.

Diraq, Sydney, NSW, Australia.

出版信息

Sci Rep. 2025 Apr 1;15(1):11065. doi: 10.1038/s41598-024-79553-2.

Abstract

In quantum computing, characterizing the full noise profile of qubits can aid in increasing coherence times and fidelities by developing error-mitigating techniques specific to the noise present. This characterization also supports efforts in advancing device fabrication to remove sources of noise. Qubit properties can be subject to non-trivial correlations in space and time, for example, spin qubits in MOS quantum dots are exposed to noise originating from the complex glassy behavior of two-level fluctuator ensembles. Engineering progress in spin qubit experiments generates large amounts of data, necessitating analysis techniques from fields experienced in managing large data sets. Fields such as astrophysics, finance, and climate science use wavelet-based methods to enhance their data analysis. Here, we propose and demonstrate wavelet-based analysis techniques to decompose signals into frequency and time components, enhancing our understanding of noise sources in qubit systems by identifying features at specific times. We apply the analysis to a state-of-the-art two-qubit experiment in a pair of SiMOS quantum dots with feedback applied to relevant operation variables. The observed correlations serve to identify common microscopic causes of noise, such as two-level fluctuators and hyperfine coupled nuclei, as well as to elucidate pathways for multi-qubit operation with more scalable feedback systems.

摘要

在量子计算中,通过开发针对存在的噪声的特定误差缓解技术,表征量子比特的完整噪声分布有助于延长相干时间并提高保真度。这种表征还支持推进器件制造以消除噪声源的工作。量子比特的特性在空间和时间上可能存在非平凡的相关性,例如,MOS量子点中的自旋量子比特会受到源自两能级涨落器集合的复杂玻璃态行为的噪声影响。自旋量子比特实验中的工程进展产生了大量数据,这就需要来自管理大数据集经验丰富领域的分析技术。天体物理学、金融和气候科学等领域使用基于小波的方法来增强其数据分析。在此,我们提出并演示基于小波的分析技术,将信号分解为频率和时间分量,通过识别特定时间的特征来增强我们对量子比特系统中噪声源的理解。我们将该分析应用于一对SiMOS量子点中的一个先进的双量子比特实验,并对相关操作变量应用反馈。观察到的相关性有助于识别噪声的常见微观原因,例如两能级涨落器和超精细耦合核,以及阐明使用更具可扩展性的反馈系统进行多量子比特操作的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0be0/11961704/413d33e1febc/41598_2024_79553_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验