Lo Yi-Kai, Chen Kuanfu, Gad Parag, Liu Wentai
IEEE Trans Biomed Circuits Syst. 2016 Feb;10(1):163-74. doi: 10.1109/TBCAS.2014.2371695. Epub 2015 Jan 22.
In this paper, we present an on-chip multi-voltage power converter incorporating of a quad-voltage timing-control rectifier and regulators to produce ±12 V and ±1.8 V simultaneously through inductive powering. The power converter achieves a PCE of 77.3% with the delivery of more than 100 mW to the implant. The proposed rectifier adopts a two-phase start-up scheme and mixed-voltage gate controller to avoid substrate leakage current. This current cannot be prevented by the conventional dynamic substrate biasing technique when using the high-voltage CMOS process with transistor threshold voltage higher than the turn-on voltage of parasitic diodes. High power conversion efficiency is achieved by 1) substrate leakage current prevention, 2) operating all rectifying transistors as switches with boosted gate control voltages, and 3) compensating the delayed turn-on and preventing reverse leakage current of rectifying switches with the proposed look-ahead comparator. This chip occupies an area of 970 μm × 4500 μm in a 0.18 μ m 32 V HV CMOS process. The quad-voltage timing-control rectifier alone is able to output a high DC voltage at the range of [2.5 V, 25 V]. With this power converter, both bench-top experiment and in-vivo power link test using a rat model were validated.
在本文中,我们展示了一种片上多电压功率转换器,它集成了一个四电压定时控制整流器和调节器,通过电感式供电同时产生±12V和±1.8V电压。该功率转换器在向植入物输送超过100mW功率时实现了77.3%的功率转换效率(PCE)。所提出的整流器采用两相启动方案和混合电压栅极控制器来避免衬底漏电流。当使用晶体管阈值电压高于寄生二极管开启电压的高压CMOS工艺时,传统的动态衬底偏置技术无法防止这种电流。通过以下方式实现了高功率转换效率:1)防止衬底漏电流;2)将所有整流晶体管作为具有升压栅极控制电压的开关来操作;3)使用所提出的超前比较器补偿整流开关的延迟导通并防止反向漏电流。在0.18μm 32V高压CMOS工艺中,该芯片占地面积为970μm×4500μm。仅四电压定时控制整流器就能在[2.5V,25V]范围内输出高直流电压。使用该功率转换器,台式实验和使用大鼠模型的体内功率链路测试均得到了验证。