Suppr超能文献

使用MATLAB在二维空间中逼近捕食者 - 猎物动态的简单有限元方法。

Simple finite element methods for approximating predator-prey dynamics in two dimensions using MATLAB.

作者信息

Garvie Marcus R, Burkardt John, Morgan Jeff

机构信息

Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada,

出版信息

Bull Math Biol. 2015 Mar;77(3):548-78. doi: 10.1007/s11538-015-0062-z. Epub 2015 Jan 24.

Abstract

We describe simple finite element schemes for approximating spatially extended predator-prey dynamics with the Holling type II functional response and logistic growth of the prey. The finite element schemes generalize 'Scheme 1' in the paper by Garvie (Bull Math Biol 69(3):931-956, 2007). We present user-friendly, open-source MATLAB code for implementing the finite element methods on arbitrary-shaped two-dimensional domains with Dirichlet, Neumann, Robin, mixed Robin-Neumann, mixed Dirichlet-Neumann, and Periodic boundary conditions. Users can download, edit, and run the codes from http://www.uoguelph.ca/~mgarvie/ . In addition to discussing the well posedness of the model equations, the results of numerical experiments are presented and demonstrate the crucial role that habitat shape, initial data, and the boundary conditions play in determining the spatiotemporal dynamics of predator-prey interactions. As most previous works on this problem have focussed on square domains with standard boundary conditions, our paper makes a significant contribution to the area.

摘要

我们描述了简单的有限元格式,用于逼近具有Holling II型功能反应和猎物逻辑斯谛增长的空间扩展捕食者 - 猎物动态。这些有限元格式推广了Garvie(《数学生物学通报》69(3):931 - 956, 2007)论文中的“格式1”。我们提供了用户友好的开源MATLAB代码,用于在具有狄利克雷、诺伊曼、罗宾、混合罗宾 - 诺伊曼、混合狄利克雷 - 诺伊曼和周期边界条件的任意形状二维区域上实现有限元方法。用户可以从http://www.uoguelph.ca/~mgarvie/下载、编辑和运行这些代码。除了讨论模型方程的适定性外,还给出了数值实验结果,这些结果证明了栖息地形状、初始数据和边界条件在决定捕食者 - 猎物相互作用的时空动态中所起的关键作用。由于此前关于这个问题的大多数工作都集中在具有标准边界条件的方形区域上,我们的论文对该领域做出了重大贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验