Suppr超能文献

用于非线性捕食者 - 猎物动态系统的古德曼神经网络方法。

Gudermannian neural network procedure for the nonlinear prey-predator dynamical system.

作者信息

Alkaabi Hafsa, Alkarbi Noura, Almemari Nouf, Ben Said Salem, Sabir Zulqurnain

机构信息

Department of Mathematical Sciences, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.

Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.

出版信息

Heliyon. 2024 Apr 2;10(7):e28890. doi: 10.1016/j.heliyon.2024.e28890. eCollection 2024 Apr 15.

Abstract

The present study performs the design of a novel Gudermannian neural networks (GNNs) for the nonlinear dynamics of prey-predator system (NDPPS). The process of GNNs is applied using the global and local search approaches named as genetic algorithm and interior-point algorithms, i.e., GNNs-GA-IPA. An error-based merit function is constructed using the NDPPS and its initial conditions and then optimized by the hybrid of GA-IPA. Six cases of the NDPPS using the variable coefficients have been presented and the correctness is observed through the overlapping of the obtained and Runge-Kutta reference results. The results of the NDPPS have been performed between 0 and 5 using the step size 0.02. The graph of absolute error are performed around 10 to 10 to check the consistency of the proposed GNNs-GA-IPA. The statistical analysis based minimum, median and semi-interquartile ranges have been performed for both predator and prey dynamics of the model. Moreover, the investigations through the statistical operators are performed to validate the reliability of the obtained outcomes based on multiple trials.

摘要

本研究针对捕食者 - 猎物系统的非线性动力学(NDPPS)设计了一种新型古德曼神经网络(GNNs)。GNNs的过程通过名为遗传算法和内点算法的全局和局部搜索方法来应用,即GNNs - GA - IPA。使用NDPPS及其初始条件构建了一个基于误差的优值函数,然后通过GA - IPA混合算法进行优化。给出了使用可变系数的NDPPS的六种情况,并通过所得结果与龙格 - 库塔参考结果的重叠来观察其正确性。NDPPS的结果在0到5之间以0.02的步长进行计算。绘制绝对误差图,范围在10到10左右,以检验所提出的GNNs - GA - IPA的一致性。对模型的捕食者和猎物动态进行了基于最小值、中位数和半四分位距范围的统计分析。此外,通过统计算子进行研究,以基于多次试验验证所得结果的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb04/11004218/cff8cf8ac66a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验