Kovács Attila, Oláh Attila, Lux Árpád, Mátyás Csaba, Németh Balázs Tamás, Kellermayer Dalma, Ruppert Mihály, Török Marianna, Szabó Lilla, Meltzer Anna, Assabiny Alexandra, Birtalan Ede, Merkely Béla, Radovits Tamás
Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
Heart and Vascular Center, Semmelweis University, Budapest, Hungary
Am J Physiol Heart Circ Physiol. 2015 Apr 1;308(7):H743-8. doi: 10.1152/ajpheart.00828.2014. Epub 2015 Jan 23.
Contractile function is considered to be precisely measurable only by invasive hemodynamics. We aimed to correlate strain values measured by speckle-tracking echocardiography (STE) with sensitive contractility parameters of pressure-volume (P-V) analysis in a rat model of exercise-induced left ventricular (LV) hypertrophy. LV hypertrophy was induced in rats by swim training and was compared with untrained controls. Echocardiography was performed using a 13-MHz linear transducer to obtain LV long- and short-axis recordings for STE analysis (GE EchoPAC). Global longitudinal (GLS) and circumferential strain (GCS) and longitudinal (LSr) and circumferential systolic strain rate (CSr) were measured. LV P-V analysis was performed using a pressure-conductance microcatheter, and load-independent contractility indices [slope of the end-systolic P-V relationship (ESPVR), preload recruitable stroke work (PRSW), and maximal dP/dt-end-diastolic volume relationship (dP/dtmax-EDV)] were calculated. Trained rats had increased LV mass index (trained vs. control; 2.76 ± 0.07 vs. 2.14 ± 0.05 g/kg, P < 0.001). P-V loop-derived contractility parameters were significantly improved in the trained group (ESPVR: 3.58 ± 0.22 vs. 2.51 ± 0.11 mmHg/μl; PRSW: 131 ± 4 vs. 104 ± 2 mmHg, P < 0.01). Strain and strain rate parameters were also supernormal in trained rats (GLS: -18.8 ± 0.3 vs. -15.8 ± 0.4%; LSr: -5.0 ± 0.2 vs. -4.1 ± 0.1 Hz; GCS: -18.9 ± 0.8 vs. -14.9 ± 0.6%; CSr: -4.9 ± 0.2 vs. -3.8 ± 0.2 Hz, P < 0.01). ESPVR correlated with GLS (r = -0.71) and LSr (r = -0.53) and robustly with GCS (r = -0.83) and CSr (r = -0.75, all P < 0.05). PRSW was strongly related to GLS (r = -0.64) and LSr (r = -0.71, both P < 0.01). STE can be a feasible and useful method for animal experiments. In our rat model, strain and strain rate parameters closely reflected the improvement in intrinsic contractile function induced by exercise training.
收缩功能被认为只有通过有创血流动力学才能精确测量。我们旨在将斑点追踪超声心动图(STE)测量的应变值与运动诱导的左心室(LV)肥厚大鼠模型中压力-容积(P-V)分析的敏感收缩性参数相关联。通过游泳训练诱导大鼠左心室肥厚,并与未训练的对照组进行比较。使用13MHz线性换能器进行超声心动图检查,以获取左心室长轴和短轴记录用于STE分析(GE EchoPAC)。测量整体纵向应变(GLS)、圆周应变(GCS)以及纵向(LSr)和圆周收缩期应变率(CSr)。使用压力-电导微导管进行左心室P-V分析,并计算与负荷无关的收缩性指标[收缩末期P-V关系的斜率(ESPVR)、可招募的前负荷搏功(PRSW)以及最大dP/dt-舒张末期容积关系(dP/dtmax-EDV)]。训练组大鼠的左心室质量指数增加(训练组与对照组相比;2.76±0.07对2.14±0.05 g/kg,P<0.001)。训练组中,P-V环衍生的收缩性参数显著改善(ESPVR:3.58±0.22对2.51±0.11 mmHg/μl;PRSW:131±4对104±2 mmHg,P<0.01)。训练组大鼠的应变和应变率参数也超常(GLS:-18.8±0.3对-15.8±0.4%;LSr:-5.0±0.2对-4.1±0.1 Hz;GCS:-18.9±0.8对-14.9±0.6%;CSr:-4.9±0.2对-3.8±0.2 Hz,P<0.01)。ESPVR与GLS(r=-0.71)和LSr(r=-0.53)相关,与GCS(r=-0.83)和CSr(r=-0.75,所有P<0.05)相关性更强。PRSW与GLS(r=-0.64)和LSr(r=-0.71,两者P<0.01)密切相关。STE对于动物实验可能是一种可行且有用的方法。在我们的大鼠模型中,应变和应变率参数密切反映了运动训练诱导的内在收缩功能的改善。