Heart Center, Semmelweis University, Budapest, Hungary.
Am J Physiol Heart Circ Physiol. 2013 Jul 1;305(1):H124-34. doi: 10.1152/ajpheart.00108.2013. Epub 2013 May 3.
Long-term exercise training is associated with characteristic structural and functional changes of the myocardium, termed athlete's heart. Several research groups investigated exercise training-induced left ventricular (LV) hypertrophy in animal models; however, only sporadic data exist about detailed hemodynamics. We aimed to provide functional characterization of exercise-induced cardiac hypertrophy in a rat model using the in vivo method of LV pressure-volume (P-V) analysis. After inducing LV hypertrophy by swim training, we assessed LV morphometry by echocardiography and performed LV P-V analysis using a pressure-conductance microcatheter to investigate in vivo cardiac function. Echocardiography showed LV hypertrophy (LV mass index: 2.41 ± 0.09 vs. 2.03 ± 0.08 g/kg, P < 0.01), which was confirmed by heart weight data and histomorphometry. Invasive hemodynamic measurements showed unaltered heart rate, arterial pressure, and LV end-diastolic volume along with decreased LV end-systolic volume, thus increased stroke volume and ejection fraction (73.7 ± 0.8 vs. 64.1 ± 1.5%, P < 0.01) in trained versus untrained control rats. The P-V loop-derived sensitive, load-independent contractility indexes, such as slope of end-systolic P-V relationship or preload recruitable stroke work (77.0 ± 6.8 vs. 54.3 ± 4.8 mmHg, P = 0.01) were found to be significantly increased. The observed improvement of ventriculoarterial coupling (0.37 ± 0.02 vs. 0.65 ± 0.08, P < 0.01), along with increased LV stroke work and mechanical efficiency, reflects improved mechanoenergetics of exercise-induced cardiac hypertrophy. Despite the significant hypertrophy, we observed unaltered LV stiffness (slope of end-diastolic P-V relationship: 0.043 ± 0.007 vs. 0.040 ± 0.006 mmHg/μl) and improved LV active relaxation (τ: 10.1 ± 0.6 vs. 11.9 ± 0.2 ms, P < 0.01). According to our knowledge, this is the first study that provides characterization of functional changes and hemodynamic relations in exercise-induced cardiac hypertrophy.
长期运动训练会引起心肌的结构和功能改变,这种改变被称为运动员心脏。一些研究小组在动物模型中研究了运动训练引起的左心室(LV)肥厚,但只有零星的数据涉及详细的血液动力学。我们旨在使用 LV 压力-容积(P-V)分析的体内方法,为运动诱导的心肌肥厚的大鼠模型提供功能特征。在通过游泳训练诱导 LV 肥厚后,我们通过超声心动图评估 LV 形态,并使用压力-电导微导管进行 LV P-V 分析,以研究体内心脏功能。超声心动图显示 LV 肥厚(LV 质量指数:2.41 ± 0.09 比 2.03 ± 0.08 g/kg,P < 0.01),这通过心脏重量数据和组织形态学得到了证实。侵入性血液动力学测量显示,在训练和未训练的对照组大鼠中,心率、动脉压和 LV 舒张末期容积不变,而 LV 收缩末期容积减少,因此,心搏量和射血分数增加(73.7 ± 0.8 比 64.1 ± 1.5%,P < 0.01)。从 P-V 环得出的敏感、负荷独立的收缩性指标,如收缩末期 P-V 关系的斜率或预负荷可诱发的搏功(77.0 ± 6.8 比 54.3 ± 4.8 mmHg,P = 0.01),发现显著增加。观察到的心室动脉偶联改善(0.37 ± 0.02 比 0.65 ± 0.08,P < 0.01),加上 LV 搏功和机械效率的增加,反映了运动诱导的心肌肥厚的机械能量改善。尽管有明显的肥厚,但我们发现 LV 僵硬度没有改变(舒张末期 P-V 关系的斜率:0.043 ± 0.007 比 0.040 ± 0.006 mmHg/μl),LV 主动松弛改善(τ:10.1 ± 0.6 比 11.9 ± 0.2 ms,P < 0.01)。据我们所知,这是第一项提供运动诱导的心肌肥厚的功能变化和血液动力学关系特征的研究。