Suppr超能文献

用一组相关的物理指标描述和分类城市声音环境。

Describing and classifying urban sound environments with a relevant set of physical indicators.

作者信息

Can A, Gauvreau B

机构信息

l'Université Nantes-Angers-Le Mans, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux, Département Aménagement-Mobilité-Environnement, Laboratoire d'Acoustique Environnementale, F-44341 Bouguenais, France.

出版信息

J Acoust Soc Am. 2015 Jan;137(1):208-18. doi: 10.1121/1.4904555.

Abstract

Categorization is a powerful method for describing urban sound environments. However, it has only been applied, until now, to discrete noise data collection, whereas sound environments vary continuously both in space and time. Therefore, a procedure is developed in this paper for describing the variations of urban sound environments. The procedure consists of mobile measurements, followed by a statistical clustering analysis that selects relevant noise indicators and classifies sound environments. Analysis are based on a 3 days + 1 night survey where geo-referenced noise measurements were collected over 19 1-h soundwalk periods in a district of Marseille, France. The clustering analysis showed that a limited subset of indicators is sufficient to discriminate sound environments. The three indicators that emerged from the clustering, namely, the Leq, A, the standard deviation σL eq, A, and the sound gravity spectrum SGC[50 Hz-10 kHz], are consistent with previous studies on sound environment classification. Moreover, the procedure proposed enables the description of the sound environment, which is classified into homogenous sound environment classes by means of the selected indicators. Thus, the procedure can be adapted to any urban environment, and can, for instance, favorably enhance perceptive studies by delimiting precisely the spatial extent of each typical sound environment.

摘要

分类是描述城市声环境的一种有效方法。然而,到目前为止,它仅应用于离散噪声数据收集,而声环境在空间和时间上都是连续变化的。因此,本文开发了一种描述城市声环境变化的程序。该程序包括移动测量,随后进行统计聚类分析,以选择相关噪声指标并对声环境进行分类。分析基于一项为期3天加1晚的调查,在法国马赛的一个地区,在19个1小时的声景漫步时段内收集了地理参考噪声测量数据。聚类分析表明,有限的一组指标足以区分声环境。聚类中出现的三个指标,即等效连续A声级Leq,A、标准差σLeq,A和声音重力谱SGC[50Hz - 10kHz],与先前关于声环境分类的研究一致。此外,所提出的程序能够描述声环境,通过选定的指标将其分类为同质声环境类别。因此,该程序可适用于任何城市环境,例如,通过精确界定每个典型声环境的空间范围,可有力地加强感知研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验