Roach Thomas, Na Chae Sun, Krieger-Liszkay Anja
Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191, Gif-sur-Yvette Cedex, France.
Plant J. 2015 Mar;81(5):759-66. doi: 10.1111/tpj.12768.
The production of reactive oxygen species (ROS) is an unavoidable part of photosynthesis. Stress that accompanies high light levels and low CO2 availability putatively includes enhanced ROS production in the so-called Mehler reaction. Such conditions are thought to encourage O2 to become an electron acceptor at photosystem I, producing the ROS superoxide anion radical (O2·-) and hydrogen peroxide (H2 O2 ). In contrast, here it is shown in Chlamydomonas reinhardtii that CO2 depletion under high light levels lowered cellular H2 O2 production, and that elevated CO2 levels increased H2 O2 production. Using various photosynthetic and mitochondrial mutants of C. reinhardtii, the chloroplast was identified as the main source of elevated H2 O2 production under high CO2 availability. High light levels under low CO2 availability induced photoprotective mechanisms called non-photochemical quenching, or NPQ, including state transitions (qT) and high energy state quenching (qE). The qE-deficient mutant npq4 produced more H2 O2 than wild-type cells under high light levels, although less so under high CO2 availability, whereas it demonstrated equal or greater enzymatic H2 O2 -degrading capacity. The qT-deficient mutant stt7-9 produced the same H2 O2 as wild-type cells under high CO2 availability. Physiological levels of H2 O2 were able to hinder qT and the induction of state 2, providing an explanation for why under high light levels and high CO2 availability wild-type cells behaved like stt7-9 cells stuck in state 1.
活性氧(ROS)的产生是光合作用不可避免的一部分。高光水平和低二氧化碳可利用性所伴随的胁迫据推测包括在所谓的梅勒反应中增强的ROS产生。这种条件被认为会促使氧气在光系统I处成为电子受体,产生ROS超氧阴离子自由基(O2·-)和过氧化氢(H2O2)。相比之下,本文在莱茵衣藻中表明,高光水平下的二氧化碳消耗降低了细胞内H2O2的产生,而升高的二氧化碳水平则增加了H2O2的产生。利用莱茵衣藻的各种光合和线粒体突变体,叶绿体被确定为高二氧化碳可利用性下H2O2产生增加的主要来源。低二氧化碳可利用性下的高光水平诱导了称为非光化学猝灭(NPQ)的光保护机制,包括状态转换(qT)和高能态猝灭(qE)。在高光水平下,qE缺陷突变体npq4比野生型细胞产生更多的H2O2,尽管在高二氧化碳可利用性下产生的较少,而其表现出同等或更强的酶促H2O2降解能力。qT缺陷突变体stt7-9在高二氧化碳可利用性下产生的H2O2与野生型细胞相同。生理水平的H2O2能够阻碍qT和状态2的诱导,这就解释了为什么在高光水平和高二氧化碳可利用性下野生型细胞的行为类似于处于状态1的stt7-9细胞。