Suppr超能文献

黄铁-铁氧还蛋白介导的 O 光还原将 H 生成与 CO 固定在光合作用的厌氧诱导过程中联系起来。

Flavodiiron-Mediated O Photoreduction Links H Production with CO Fixation during the Anaerobic Induction of Photosynthesis.

机构信息

Laboratoire de Bioénergétique et de Biotechnologie des Microalgues, BIAM, CEA, CNRS, Aix Marseille Univ, F-13108 Saint-Paul-lez-Durance, France.

AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801 Bochum, Germany.

出版信息

Plant Physiol. 2018 Aug;177(4):1639-1649. doi: 10.1104/pp.18.00721. Epub 2018 Jul 5.

Abstract

Some microalgae, such as , harbor a highly flexible photosynthetic apparatus capable of using different electron acceptors, including carbon dioxide (CO), protons, or oxygen (O), allowing survival in diverse habitats. During anaerobic induction of photosynthesis, molecular O is produced at photosystem II, while at the photosystem I acceptor side, the reduction of protons into hydrogen (H) by the plastidial [FeFe]-hydrogenases primes CO fixation. Although the interaction between H production and CO fixation has been studied extensively, their interplay with O produced by photosynthesis has not been considered. By simultaneously measuring gas exchange and chlorophyll fluorescence, we identified an O photoreduction mechanism that functions during anaerobic dark-to-light transitions and demonstrate that flavodiiron proteins (Flvs) are the major players involved in light-dependent O uptake. We further show that Flv-mediated O uptake is critical for the rapid induction of CO fixation but is not involved in the creation of the micro-oxic niches proposed previously to protect the [FeFe]-hydrogenase from O By studying a mutant lacking both hydrogenases (HYDA1 and HYDA2) and both Flvs (FLVA and FLVB), we show that the induction of photosynthesis is strongly delayed in the absence of both sets of proteins. Based on these data, we propose that Flvs are involved in an important intracellular O recycling process, which acts as a relay between H production and CO fixation.

摘要

一些微藻,如 ,拥有高度灵活的光合作用器官,能够利用不同的电子受体,包括二氧化碳(CO)、质子或氧气(O),从而在各种生境中生存。在光合作用的厌氧诱导过程中,分子 O 在光系统 II 中产生,而在光系统 I 的受体侧,质体[FeFe]-氢化酶将质子还原为氢(H),为 CO 固定提供动力。尽管已经广泛研究了 H 产生和 CO 固定之间的相互作用,但它们与光合作用产生的 O 之间的相互作用尚未被考虑。通过同时测量气体交换和叶绿素荧光,我们确定了一种在厌氧暗至光转变期间起作用的 O 光还原机制,并证明 flavodiiron 蛋白(Flv)是参与光依赖性 O 摄取的主要参与者。我们进一步表明,Flv 介导的 O 摄取对于 CO 固定的快速诱导至关重要,但不涉及先前提出的创建微缺氧生境的过程,以保护[FeFe]-氢化酶免受 O 的影响。通过研究缺乏两种氢化酶(HYDA1 和 HYDA2)和两种 Flv(FLVA 和 FLVB)的突变体,我们表明在缺乏这两套蛋白的情况下,光合作用的诱导被强烈延迟。基于这些数据,我们提出 Flv 参与了一个重要的细胞内 O 再循环过程,该过程在 H 产生和 CO 固定之间起到了接力作用。

相似文献

1
Flavodiiron-Mediated O Photoreduction Links H Production with CO Fixation during the Anaerobic Induction of Photosynthesis.
Plant Physiol. 2018 Aug;177(4):1639-1649. doi: 10.1104/pp.18.00721. Epub 2018 Jul 5.
2
Flavodiiron Proteins Promote Fast and Transient O Photoreduction in .
Plant Physiol. 2017 Jul;174(3):1825-1836. doi: 10.1104/pp.17.00421. Epub 2017 May 9.
3
Chlamydomonas Flavodiiron Proteins Facilitate Acclimation to Anoxia During Sulfur Deprivation.
Plant Cell Physiol. 2015 Aug;56(8):1598-607. doi: 10.1093/pcp/pcv085. Epub 2015 Jun 10.
8
Water oxidation by photosystem II is the primary source of electrons for sustained H photoproduction in nutrient-replete green algae.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29629-29636. doi: 10.1073/pnas.2009210117. Epub 2020 Nov 9.
10
Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
Planta. 2008 Jan;227(2):397-407. doi: 10.1007/s00425-007-0626-8. Epub 2007 Sep 21.

引用本文的文献

2
Outlook on Synthetic Biology-Driven Hydrogen Production: Lessons from Algal Photosynthesis Applied to Cyanobacteria.
Energy Fuels. 2025 Mar 11;39(11):4987-5006. doi: 10.1021/acs.energyfuels.4c04772. eCollection 2025 Mar 20.
3
Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system.
Environ Sci Ecotechnol. 2024 Dec 15;23:100519. doi: 10.1016/j.ese.2024.100519. eCollection 2025 Jan.
4
Photosystems under high light stress: throwing light on mechanism and adaptation.
Photosynthetica. 2023 May 30;61(2):250-263. doi: 10.32615/ps.2023.021. eCollection 2023.
5
Regulation of Microalgal Photosynthetic Electron Transfer.
Plants (Basel). 2024 Jul 29;13(15):2103. doi: 10.3390/plants13152103.
6
Extra O evolution reveals an O-independent alternative electron sink in photosynthesis of marine diatoms.
Photosynth Res. 2024 Jan;159(1):61-68. doi: 10.1007/s11120-023-01073-3. Epub 2024 Feb 5.
7
Induction of photosynthesis under anoxic condition in and : interactions between fermentation and photosynthesis.
Front Plant Sci. 2023 Jul 25;14:1186926. doi: 10.3389/fpls.2023.1186926. eCollection 2023.
8
Weak acids produced during anaerobic respiration suppress both photosynthesis and aerobic respiration.
Nat Commun. 2023 Jul 14;14(1):4207. doi: 10.1038/s41467-023-39898-0.
9
A PSII photosynthetic control is activated in anoxic cultures of green algae following illumination.
Commun Biol. 2023 May 12;6(1):514. doi: 10.1038/s42003-023-04890-3.
10
mutants deficient for Old Yellow Enzyme 3 exhibit increased photooxidative stress.
Plant Direct. 2023 Jan 15;7(1):e480. doi: 10.1002/pld3.480. eCollection 2023 Jan.

本文引用的文献

1
Green Algal Hydrogenase Activity Is Outcompeted by Carbon Fixation before Inactivation by Oxygen Takes Place.
Plant Physiol. 2018 Jul;177(3):918-926. doi: 10.1104/pp.18.00229. Epub 2018 May 21.
2
Flavodiiron Protein Substitutes for Cyclic Electron Flow without Competing CO Assimilation in Rice.
Plant Physiol. 2018 Feb;176(2):1509-1518. doi: 10.1104/pp.17.01335. Epub 2017 Dec 14.
3
Flavodiiron Proteins Promote Fast and Transient O Photoreduction in .
Plant Physiol. 2017 Jul;174(3):1825-1836. doi: 10.1104/pp.17.00421. Epub 2017 May 9.
4
The Liverwort, , Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI.
Plant Physiol. 2017 Mar;173(3):1636-1647. doi: 10.1104/pp.16.01038. Epub 2017 Feb 2.
5
Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12322-12327. doi: 10.1073/pnas.1606685113. Epub 2016 Oct 10.
7
Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
Mol Plant. 2017 Jan 9;10(1):20-29. doi: 10.1016/j.molp.2016.08.004. Epub 2016 Aug 26.
9
Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis.
Nat Plants. 2016 Feb 22;2:16012. doi: 10.1038/nplants.2016.12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验