Laboratoire de Bioénergétique et de Biotechnologie des Microalgues, BIAM, CEA, CNRS, Aix Marseille Univ, F-13108 Saint-Paul-lez-Durance, France.
AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801 Bochum, Germany.
Plant Physiol. 2018 Aug;177(4):1639-1649. doi: 10.1104/pp.18.00721. Epub 2018 Jul 5.
Some microalgae, such as , harbor a highly flexible photosynthetic apparatus capable of using different electron acceptors, including carbon dioxide (CO), protons, or oxygen (O), allowing survival in diverse habitats. During anaerobic induction of photosynthesis, molecular O is produced at photosystem II, while at the photosystem I acceptor side, the reduction of protons into hydrogen (H) by the plastidial [FeFe]-hydrogenases primes CO fixation. Although the interaction between H production and CO fixation has been studied extensively, their interplay with O produced by photosynthesis has not been considered. By simultaneously measuring gas exchange and chlorophyll fluorescence, we identified an O photoreduction mechanism that functions during anaerobic dark-to-light transitions and demonstrate that flavodiiron proteins (Flvs) are the major players involved in light-dependent O uptake. We further show that Flv-mediated O uptake is critical for the rapid induction of CO fixation but is not involved in the creation of the micro-oxic niches proposed previously to protect the [FeFe]-hydrogenase from O By studying a mutant lacking both hydrogenases (HYDA1 and HYDA2) and both Flvs (FLVA and FLVB), we show that the induction of photosynthesis is strongly delayed in the absence of both sets of proteins. Based on these data, we propose that Flvs are involved in an important intracellular O recycling process, which acts as a relay between H production and CO fixation.
一些微藻,如 ,拥有高度灵活的光合作用器官,能够利用不同的电子受体,包括二氧化碳(CO)、质子或氧气(O),从而在各种生境中生存。在光合作用的厌氧诱导过程中,分子 O 在光系统 II 中产生,而在光系统 I 的受体侧,质体[FeFe]-氢化酶将质子还原为氢(H),为 CO 固定提供动力。尽管已经广泛研究了 H 产生和 CO 固定之间的相互作用,但它们与光合作用产生的 O 之间的相互作用尚未被考虑。通过同时测量气体交换和叶绿素荧光,我们确定了一种在厌氧暗至光转变期间起作用的 O 光还原机制,并证明 flavodiiron 蛋白(Flv)是参与光依赖性 O 摄取的主要参与者。我们进一步表明,Flv 介导的 O 摄取对于 CO 固定的快速诱导至关重要,但不涉及先前提出的创建微缺氧生境的过程,以保护[FeFe]-氢化酶免受 O 的影响。通过研究缺乏两种氢化酶(HYDA1 和 HYDA2)和两种 Flv(FLVA 和 FLVB)的突变体,我们表明在缺乏这两套蛋白的情况下,光合作用的诱导被强烈延迟。基于这些数据,我们提出 Flv 参与了一个重要的细胞内 O 再循环过程,该过程在 H 产生和 CO 固定之间起到了接力作用。