Chakravarty Devlina, Chakraborti Soumyananda, Chakrabarti Pinak
Department of Biochemistry, Bose Institute, Kolkata, West Bengal, 700054, India.
Proteins. 2015 Apr;83(4):696-710. doi: 10.1002/prot.24767. Epub 2015 Feb 5.
Dystrophin is a long, rod-shaped cytoskeleton protein implicated in muscular dystrophy (MDys). Utrophin is the closest autosomal homolog of dystrophin. Both proteins have N-terminal actin-binding domain (N-ABD), a central rod domain and C-terminal region. N-ABD, composed of two calponin homology (CH) subdomains joined by a helical linker, harbors a few disease causing missense mutations. Although the two proteins share considerable homology (>72%) in N-ABD, recent structural and biochemical studies have shown that there are significant differences (including stability, mode of actin-binding) and their functions are not completely interchangeable. In this investigation, we have used extensive molecular dynamics simulations to understand the differences and the similarities of these two proteins, along with another actin-binding protein, fimbrin. In silico mutations were performed to identify two key residues that might be responsible for the dynamical difference between the molecules. Simulation points to the inherent flexibility of the linker region, which adapts different conformations in the wild type dystrophin. Mutations T220V and G130D in dystrophin constrain the flexibility of the central helical region, while in the two known disease-causing mutants, K18N and L54R, the helicity of the region is compromised. Phylogenetic tree and sequence analysis revealed that dystrophin and utrophin genes have probably originated from the same ancestor. The investigation would provide insight into the functional diversity of two closely related proteins and fimbrin, and contribute to our understanding of the mechanism of MDys.
肌营养不良蛋白是一种长杆状的细胞骨架蛋白,与肌肉营养不良(MDys)有关。抗肌萎缩蛋白聚糖是肌营养不良蛋白最接近的常染色体同源物。这两种蛋白质都有N端肌动蛋白结合结构域(N-ABD)、一个中央杆状结构域和C端区域。N-ABD由两个通过螺旋连接子连接的钙调蛋白同源(CH)亚结构域组成,含有一些导致疾病的错义突变。尽管这两种蛋白质在N-ABD中具有相当高的同源性(>72%),但最近的结构和生化研究表明,它们之间存在显著差异(包括稳定性、肌动蛋白结合模式),并且它们的功能并不完全可互换。在本研究中,我们使用了广泛的分子动力学模拟来了解这两种蛋白质以及另一种肌动蛋白结合蛋白丝状肌动蛋白的异同。进行了计算机模拟突变,以确定可能导致分子间动力学差异的两个关键残基。模拟结果表明连接子区域具有内在的灵活性,在野生型肌营养不良蛋白中它会适应不同的构象。肌营养不良蛋白中的T220V和G130D突变限制了中央螺旋区域的灵活性,而在两个已知的致病突变体K18N和L54R中,该区域的螺旋性受到损害。系统发育树和序列分析表明,肌营养不良蛋白和抗肌萎缩蛋白聚糖基因可能起源于同一祖先。这项研究将有助于深入了解这两种密切相关的蛋白质和丝状肌动蛋白的功能多样性,并有助于我们理解MDys的机制。