Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota.
Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota.
Biophys J. 2018 Aug 7;115(3):445-454. doi: 10.1016/j.bpj.2018.05.039. Epub 2018 Jun 20.
We have used pulsed electron paramagnetic resonance, calorimetry, and molecular dynamics simulations to examine the structural mechanism of binding for dystrophin's N-terminal actin-binding domain (ABD1) and compare it to utrophin's ABD1. Like other members of the spectrin superfamily, dystrophin's ABD1 consists of two calponin-homology (CH) domains, CH1 and CH2. Several mutations within dystrophin's ABD1 are associated with the development of severe degenerative muscle disorders Duchenne and Becker muscular dystrophies, highlighting the importance of understanding its structural biology. To investigate structural changes within dystrophin ABD1 upon binding to actin, we labeled the protein with spin probes and measured changes in inter-CH domain distance using double-electron electron resonance. Previous studies on the homologous protein utrophin showed that actin binding induces a complete structural opening of the CH domains, resulting in a highly ordered ABD1-actin complex. In this study, double-electron electron resonance shows that dystrophin ABD1 also undergoes a conformational opening upon binding F-actin, but this change is less complete and significantly more structurally disordered than observed for utrophin. Using molecular dynamics simulations, we identified a hinge in the linker region between the two CH domains that grants conformational flexibility to ABD1. The conformational dynamics of both dystrophin's and utrophin's ABD1 showed that compact conformations driven by hydrophobic interactions are preferred and that extended conformations are energetically accessible through a flat free-energy surface. Considering that the binding free energy of ABD1 to actin is on the order of 6-7 kcal/mole, our data are compatible with a mechanism in which binding to actin is largely dictated by specific interactions with CH1, but fine tuning of the binding affinity is achieved by the overlap between conformational ensembles of ABD1 free and bound to actin.
我们使用脉冲电子顺磁共振、量热法和分子动力学模拟研究了肌营养不良蛋白的 N 端肌动蛋白结合结构域(ABD1)的结合结构机制,并将其与 utrophin 的 ABD1 进行了比较。像 spectrin 超家族的其他成员一样,肌营养不良蛋白的 ABD1 由两个 calponin 同源(CH)结构域 CH1 和 CH2 组成。肌营养不良蛋白 ABD1 内的几个突变与严重退行性肌肉疾病杜氏肌营养不良症和贝克肌营养不良症的发展有关,这突出了了解其结构生物学的重要性。为了研究肌营养不良蛋白 ABD1 在与肌动蛋白结合时的结构变化,我们用自旋探针标记了该蛋白,并使用双电子电子共振测量了 CH 结构域之间的距离变化。以前对同源蛋白 utrophin 的研究表明,肌动蛋白结合诱导 CH 结构域完全打开,导致 ABD1-肌动蛋白复合物高度有序。在这项研究中,双电子电子共振表明肌营养不良蛋白 ABD1 也在与 F-肌动蛋白结合时发生构象打开,但这种变化不如 utrophin 那样完全,结构也更加无序。使用分子动力学模拟,我们在两个 CH 结构域之间的连接区域发现了一个铰链,该铰链赋予 ABD1 构象灵活性。肌营养不良蛋白和 utrophin 的 ABD1 的构象动力学表明,由疏水相互作用驱动的紧凑构象是首选的,而通过平坦的自由能表面可以获得扩展构象。考虑到 ABD1 与肌动蛋白的结合自由能约为 6-7 kcal/mol,我们的数据与一种机制兼容,即 ABD1 与肌动蛋白的结合主要由与 CH1 的特异性相互作用决定,但通过 ABD1 游离和与肌动蛋白结合的构象集合的重叠来实现结合亲和力的精细调整。