Bandi Swati, Singh Surinder M, Mallela Krishna M G
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States.
Biochemistry. 2015 Sep 8;54(35):5480-8. doi: 10.1021/acs.biochem.5b00741. Epub 2015 Aug 26.
Tandem calponin-homology (CH) domains are the most common actin-binding domains in proteins. However, structural principles underlying their function are poorly understood. These tandem domains exist in multiple conformations with varying degrees of inter-CH-domain interactions. Dystrophin and utrophin tandem CH domains share high sequence similarity (∼82%), yet differ in their structural stability and actin-binding affinity. We examined whether the conformational differences between the two tandem CH domains can explain differences in their stability and actin binding. Dystrophin tandem CH domain is more stable by ∼4 kcal/mol than that of utrophin. Individual CH domains of dystrophin and utrophin have identical structures but differ in their relative orientation around the interdomain linker. We swapped the linkers between dystrophin and utrophin tandem CH domains. Dystrophin tandem CH domain with utrophin linker (DUL) has similar stability as that of utrophin tandem CH domain. Utrophin tandem CH domain with dystrophin linker (UDL) has similar stability as that of dystrophin tandem CH domain. Dystrophin tandem CH domain binds to F-actin ∼30 times weaker than that of utrophin. After linker swapping, DUL has twice the binding affinity as that of dystrophin tandem CH domain. Similarly, UDL has half the binding affinity as that of utrophin tandem CH domain. However, changes in binding free energies due to linker swapping are much lower by an order of magnitude compared to the corresponding changes in unfolding free energies. These results indicate that the linker region determines primarily the structural stability of tandem CH domains rather than their actin-binding affinity.
串联的钙调蛋白同源(CH)结构域是蛋白质中最常见的肌动蛋白结合结构域。然而,其功能背后的结构原理却知之甚少。这些串联结构域以多种构象存在,CH结构域间的相互作用程度各不相同。肌营养不良蛋白和抗肌萎缩蛋白的串联CH结构域具有高度的序列相似性(约82%),但其结构稳定性和肌动蛋白结合亲和力却有所不同。我们研究了这两个串联CH结构域之间的构象差异是否能够解释它们在稳定性和肌动蛋白结合方面的差异。肌营养不良蛋白的串联CH结构域比抗肌萎缩蛋白的串联CH结构域稳定约4千卡/摩尔。肌营养不良蛋白和抗肌萎缩蛋白的单个CH结构域具有相同的结构,但它们围绕结构域间连接区的相对取向不同。我们交换了肌营养不良蛋白和抗肌萎缩蛋白串联CH结构域之间的连接区。带有抗肌萎缩蛋白连接区的肌营养不良蛋白串联CH结构域(DUL)具有与抗肌萎缩蛋白串联CH结构域相似的稳定性。带有肌营养不良蛋白连接区的抗肌萎缩蛋白串联CH结构域(UDL)具有与肌营养不良蛋白串联CH结构域相似的稳定性。肌营养不良蛋白的串联CH结构域与F-肌动蛋白的结合能力比抗肌萎缩蛋白弱约30倍。连接区交换后,DUL的结合亲和力是肌营养不良蛋白串联CH结构域的两倍。同样,UDL的结合亲和力是抗肌萎缩蛋白串联CH结构域的一半。然而,与相应的去折叠自由能变化相比,连接区交换导致的结合自由能变化要低一个数量级。这些结果表明,连接区主要决定串联CH结构域的结构稳定性,而非其肌动蛋白结合亲和力。