Capurro Alberto, Bodea Liviu-Gabriel, Schaefer Patrick, Luthi-Carter Ruth, Perreau Victoria M
Department of Cell Physiology and Pharmacology, University of Leicester Leicester, UK.
Neural Regeneration Unit, Institute of Reconstructive Neurobiology, University of Bonn Bonn, Germany ; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland St Lucia, QLD, Australia.
Front Neurosci. 2015 Jan 9;8:441. doi: 10.3389/fnins.2014.00441. eCollection 2014.
The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD.
对病变组织中分子变化的表征有助于深入了解病理生理机制,对治疗方法的开发具有重要意义。全基因组基因表达分析已被证明在利用死后人类脑组织识别神经退行性疾病中的生物学过程方面具有价值,并且有许多数据集可供公开使用。然而,许多研究使用由多种细胞类型组成的异质组织样本,所有这些细胞类型都会对全局基因表达值产生影响,从而混淆了数据的生物学解释。特别是,神经退行性变中神经元和胶质细胞数量的变化会混淆转录组分析,尤其是在样本可用性和对照有限的人类脑组织中。为了识别神经退行性疾病中细胞特异性的基因表达变化,我们应用了我们最近发表的计算去卷积方法,即群体特异性表达分析(PSEA)。PSEA使用参考表达量度来估计细胞类型特异性表达值,对于脑组织而言,这些参考表达量度包括在神经元、星形胶质细胞、少突胶质细胞和小胶质细胞中具有细胞类型特异性表达的mRNA。作为PSEA在神经退行性疾病中的实施和假设开发的一项实践,我们将PSEA应用于帕金森病和亨廷顿病(PD,HD)数据集。通过PSEA鉴定为黑质致密部神经元中差异表达的基因,使用外部激光捕获显微切割数据进行了验证。网络分析和注释聚类(DAVID)确定了特定细胞类型中差异基因表达所涉及的分子过程。这些分析结果为PSEA在脑组织中的应用以及人类HD和PD中分子特征的进一步细化提供了新的见解。