Slade Daniel J, Fang Pengfei, Dreyton Christina J, Zhang Ying, Fuhrmann Jakob, Rempel Don, Bax Benjamin D, Coonrod Scott A, Lewis Huw D, Guo Min, Gross Michael L, Thompson Paul R
†Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States.
¶Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.
ACS Chem Biol. 2015 Apr 17;10(4):1043-53. doi: 10.1021/cb500933j. Epub 2015 Jan 26.
Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.
蛋白质精氨酸脱亚氨酶(PADs)是钙依赖性组蛋白修饰酶,其活性在炎症性疾病和癌症中失调。在乳腺癌细胞中,PAD2通过使雌激素受体(ER)结合位点处的组蛋白尾部精氨酸残基瓜氨酸化,发挥雌激素受体(ER)共激活因子的作用。尽管是一个有吸引力的治疗靶点,但调节PAD2活性的机制在很大程度上尚不清楚,尤其是钙促进酶激活的详细作用。为了深入了解这些调节过程,我们确定了PAD2的首批结构(共27个),并通过X射线晶体学进行钙滴定,确定了与该酶结合并激活它的六个钙离子的结合顺序和亲和力。这些结构还确定了几个PAD2调节元件,包括一个控制催化半胱氨酸残基正确定位的钙开关,以及一种新的活性位点屏蔽机制。基于其他生化和质谱的氢/氘交换研究支持了这些结构发现。沿着PAD2激活途径鉴定出多个中间钙结合结构,提供了关键的见解,这将有助于开发靶向PADs的变构抑制剂。