Centre for Integrative Bioinformatics (IBIVU), VU University Amsterdam, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), VU University Amsterdam, Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Netherlands Bioinformatics Centre (NBIC), Geert Grooteplein 28 6525 GA Nijmegen, The Netherlands and Department of Biological Psychology, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands.
Bioinformatics. 2014 Feb 1;30(3):326-34. doi: 10.1093/bioinformatics/btt675. Epub 2013 Nov 22.
To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full atomistic molecular simulation methods do have this potential, but are completely unfeasible for large-scale applications in terms of computational cost required. Here we investigate whether applying coarse-grained (CG) molecular dynamics simulations is a viable alternative for complexes of known structure.
We calculate the free energy barrier with respect to the bound state based on molecular dynamics simulations using both a full atomistic and a CG force field for the TCR-pMHC complex and the MP1-p14 scaffolding complex. We find that the free energy barriers from the CG simulations are of similar accuracy as those from the full atomistic ones, while achieving a speedup of >500-fold. We also observe that extensive sampling is extremely important to obtain accurate free energy barriers, which is only within reach for the CG models. Finally, we show that the CG model preserves biological relevance of the interactions: (i) we observe a strong correlation between evolutionary likelihood of mutations and the impact on the free energy barrier with respect to the bound state; and (ii) we confirm the dominant role of the interface core in these interactions. Therefore, our results suggest that CG molecular simulations can realistically be used for the accurate prediction of protein-protein interaction strength.
The python analysis framework and data files are available for download at http://www.ibi.vu.nl/downloads/bioinformatics-2013-btt675.tgz.
为了评估在生理条件下两种蛋白质是否会相互作用,需要有关相互作用自由能的信息。用于预测蛋白质-蛋白质相互作用的统计学习技术和对接方法无法定量估计结合自由能。全原子分子模拟方法确实具有这种潜力,但就所需的计算成本而言,对于大规模应用完全不可行。在这里,我们研究了应用粗粒(CG)分子动力学模拟是否是具有已知结构的复合物的可行替代方法。
我们使用全原子和 CG 力场分别针对 TCR-pMHC 复合物和 MP1-p14 支架复合物的分子动力学模拟计算了相对于结合态的自由能势垒。我们发现 CG 模拟的自由能势垒的准确性与全原子模拟的势垒相当,而速度却提高了> 500 倍。我们还观察到,广泛的采样对于获得准确的自由能势垒非常重要,而这仅在 CG 模型中才可行。最后,我们表明 CG 模型保留了相互作用的生物学相关性:(i)我们观察到突变的进化可能性与相对于结合态的自由能势垒的影响之间存在很强的相关性;(ii)我们确认了界面核心在这些相互作用中的主导作用。因此,我们的结果表明,CG 分子模拟可用于准确预测蛋白质-蛋白质相互作用强度。
可从 http://www.ibi.vu.nl/downloads/bioinformatics-2013-btt675.tgz 下载用于 Python 分析的框架和数据文件。