文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超顺磁性氧化铁纳米颗粒偶联重组白细胞介素-1 受体拮抗剂用于实验性脑胶质母细胞瘤的诊断与治疗靶向。

Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma.

机构信息

Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia; A.L. Polenov Russian Research Scientific Institute of Neurosurgery, St. Petersburg, Russia.

Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia.

出版信息

Neoplasia. 2015 Jan;17(1):32-42. doi: 10.1016/j.neo.2014.11.001.


DOI:10.1016/j.neo.2014.11.001
PMID:25622897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4309733/
Abstract

Cerebral edema commonly accompanies brain tumors and contributes to neurologic symptoms. The role of the interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles (SPION-IL-1Ra) was assessed to analyze its anti-edemal effect and its possible application as a negative contrast enhancing agent for magnetic resonance imaging (MRI). Rats with intracranial C6 glioma were intravenously administered at various concentrations of IL-1Ra or SPION-IL-1Ra. Brain peritumoral edema following treatment with receptor antagonist was assessed with high-field MRI. IL-1Ra administered at later stages of tumor progression significantly reduced peritumoral edema (as measured by MRI) and prolonged two-fold the life span of comorbid animals in a dose-dependent manner in comparison to control and corticosteroid-treated animals (P < .001). Synthesized SPION-IL-1Ra conjugates had the properties of negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION-IL-1Ra nanoparticles demonstrated high intracellular incorporation and absence of toxic influence on C6 cells and lymphocyte viability and proliferation. Retention of the nanoparticles in the tumor resulted in enhanced hypotensive T2-weighted images of glioma, proving the application of the conjugates as negative magnetic resonance contrast agents. Moreover, nanoparticles reduced the peritumoral edema confirming the therapeutic potency of synthesized conjugates. SPION-IL-1Ra nanoparticles have an anti-edemal effect when administered through a clinically relevant route in animals with glioma. The SPION-IL-1Ra could be a candidate for theranostic approach in neuro-oncology both for diagnosis of brain tumors and management of peritumoral edema.

摘要

脑水肿通常伴随脑瘤发生,并导致神经症状。本研究旨在评估白细胞介素-1 受体拮抗剂(IL-1Ra)与超顺磁性氧化铁纳米颗粒(SPION-1Ra)偶联物的作用,以分析其抗水肿作用及其作为磁共振成像(MRI)负性对比增强剂的潜在应用。将不同浓度的 IL-1Ra 或 SPION-IL-1Ra 经静脉注入颅内 C6 神经胶质瘤大鼠,用高场强 MRI 评估治疗后肿瘤周围水肿情况。与对照组和皮质激素治疗组相比,在肿瘤进展后期给予受体拮抗剂可显著降低肿瘤周围水肿(MRI 测量),并使伴发病动物的生存期延长两倍(P<0.001)。合成的 SPION-IL-1Ra 偶联物具有高弛豫效率负性对比剂的特性。SPION-IL-1Ra 纳米粒子的体外研究表明,其具有高细胞内摄取率,对 C6 细胞和淋巴细胞活力及增殖无毒性影响。纳米粒子在肿瘤中的保留导致增强了胶质瘤的低场 T2 加权图像,证明了这些偶联物作为负性磁共振对比剂的应用。此外,纳米粒子减少了肿瘤周围水肿,证实了合成偶联物的治疗效力。SPION-IL-1Ra 纳米粒子经临床相关途径给药,在患有神经胶质瘤的动物中具有抗水肿作用。SPION-IL-1Ra 可作为神经肿瘤学中诊断脑肿瘤和管理肿瘤周围水肿的治疗诊断方法的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/8cdd810295c1/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/c2799ec57487/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/107a75cdb6ab/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/a114aa125780/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/ed6d08b3d9f1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/636bbeabc623/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/662e97293479/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/8cdd810295c1/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/c2799ec57487/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/107a75cdb6ab/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/a114aa125780/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/ed6d08b3d9f1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/636bbeabc623/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/662e97293479/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37cc/4309733/8cdd810295c1/gr7.jpg

相似文献

[1]
Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma.

Neoplasia. 2015-1

[2]
Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors.

Int J Nanomedicine. 2014-1-3

[3]
Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1).

Nanoscale. 2015-11-24

[4]
Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

Int J Nanomedicine. 2018-3-12

[5]
In vivo magnetic resonance imaging tracking of C6 glioma cells labeled with superparamagnetic iron oxide nanoparticles.

Einstein (Sao Paulo). 2012

[6]
Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme.

J Biomed Nanotechnol. 2016-2

[7]
Dual-Targeting Lactoferrin-Conjugated Polymerized Magnetic Polydiacetylene-Assembled Nanocarriers with Self-Responsive Fluorescence/Magnetic Resonance Imaging for In Vivo Brain Tumor Therapy.

Adv Healthc Mater. 2016-3

[8]
Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma.

Neuro Oncol. 2013-12-4

[9]
pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent.

Acta Biomater. 2017-3-29

[10]
Difference in the intratumoral distributions of extracellular-fluid and intravascular MR contrast agents in glioblastoma growth.

NMR Biomed. 2016-12

引用本文的文献

[1]
Blood-Brain Barrier Alterations and Edema Formation in Different Brain Mass Lesions.

Front Cell Neurosci. 2022-7-15

[2]
Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology.

Int J Mol Sci. 2022-4-9

[3]
Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics.

Regen Biomater. 2021-11-12

[4]
Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles.

Polymers (Basel). 2021-9-3

[5]
Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges.

Brain Sci. 2021-3-11

[6]
Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment.

Acta Pharm Sin B. 2020-11

[7]
Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach.

Int J Mol Sci. 2020-8-10

[8]
Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art.

Pharmaceutics. 2020-6-3

[9]
Targeted Theranostic Nanoparticles for Brain Tumor Treatment.

Pharmaceutics. 2018-10-9

[10]
Membrane heat shock protein 70: a theranostic target for cancer therapy.

Philos Trans R Soc Lond B Biol Sci. 2018-1-19

本文引用的文献

[1]
Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma.

Biochem Biophys Res Commun. 2014-8-11

[2]
Magnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles.

Nanoscale Res Lett. 2014-6-15

[3]
In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models.

J Neurooncol. 2014-9

[4]
Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications.

Nanoscale. 2014-8-7

[5]
Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells.

Nat Commun. 2014-6-19

[6]
Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α2-mediated endocytosis.

Biomaterials. 2014-4-16

[7]
Functional nanoparticles in targeting glioma diagnosis and therapies.

J Nanosci Nanotechnol. 2014-1

[8]
The effect of bumetanide on photodynamic therapy-induced peri-tumor edema of C6 glioma xenografts.

Lasers Surg Med. 2014-7

[9]
Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors.

Int J Nanomedicine. 2014-1-3

[10]
Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier.

Cancer Res. 2013-12-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索