文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用壳聚糖基超顺磁性氧化铁纳米粒子(CS-DX-SPIONs)靶向实验性原位脑胶质瘤。

Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

机构信息

Department of Cell Biotechnology, Institute of Cytology of the Russian Academy of Sciences, St Petersburg, Russia.

Department of Radiation Immuno Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.

出版信息

Int J Nanomedicine. 2018 Mar 12;13:1471-1482. doi: 10.2147/IJN.S152461. eCollection 2018.


DOI:10.2147/IJN.S152461
PMID:29559776
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5856030/
Abstract

BACKGROUND: Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). METHODS: Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. RESULTS: CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by (spin-lattice relaxation time) and (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 μg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in values (<0.001). Subsequent histological studies proved the accumulation of the nanoparticles inside glioblastoma cells. CONCLUSION: Hybrid chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the delineation of the brain tumor. Due to a significant retention of the particles in the tumor an application of the CS-DX-SPIONs could not only improve the tumor imaging but also could allow a targeted delivery of chemotherapeutic agents.

摘要

背景:胶质母细胞瘤是成人中枢神经系统中最具破坏性的原发性脑肿瘤。磁性纳米载体不仅有助于将化疗药物靶向递送至肿瘤部位,而且还可为磁共振成像 (MRI) 提供对比增强特性。

方法:通过透射电子显微镜 (TEM) 和弛豫率研究对合成的壳聚糖-葡聚糖超顺磁纳米粒子 (CS-DX-SPIONs) 进行了表征。采用非线性磁响应测量来确认粒子的超顺磁状态。在体外分析纳米颗粒细胞摄取后,在啮齿动物的原位胶质瘤模型中评估了肿瘤靶向。

结果:TEM 下 CS-DX-SPIONs 纳米粒子的直径均匀,为 55nm,并且通过(自旋晶格弛豫时间)和(自旋-自旋弛豫时间)质子弛豫时间确定了超顺磁性特征。壳聚糖的应用将基于葡聚糖的 SPIONs 的电荷从+8.9 增加到+19.3mV。在环境温度下,CS-DX-SPIONs 在第二个谐波下的非线性磁响应表明,在非常低的磁滞作用下,固定磁场的缓慢变化表明粒子处于超顺磁状态。共聚焦显微镜和流式细胞术研究表明,与葡聚糖包覆的粒子相比,壳聚糖基纳米粒子在 U87、C6 神经胶质瘤和 HeLa 细胞中的内化增强。细胞毒性测定表明,合成的纳米粒子在高达 10μg/ml 的浓度下具有可接受的毒性特征。静脉内给予大鼠原位 C6 神经胶质瘤的 CS-DX-SPIONs 在高分辨率 MRI(11.0T)下积聚在肿瘤部位。纳米粒子的保留导致肿瘤图像的对比度显著增强,同时(T2)值急剧下降(<0.001)。随后的组织学研究证明了纳米粒子在神经胶质瘤细胞内的积累。

结论:壳聚糖-葡聚糖混合磁性颗粒显示出用于描绘脑肿瘤的高磁共振对比增强特性。由于粒子在肿瘤中的显著保留,CS-DX-SPIONs 的应用不仅可以改善肿瘤成像,还可以允许靶向递送化疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/c83971f1615b/ijn-13-1471Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/3058537d00e7/ijn-13-1471Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/fe1b842eaaf0/ijn-13-1471Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/07938610e5f0/ijn-13-1471Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/3adf2883f6a8/ijn-13-1471Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/4503424d4944/ijn-13-1471Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/c83971f1615b/ijn-13-1471Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/3058537d00e7/ijn-13-1471Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/fe1b842eaaf0/ijn-13-1471Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/07938610e5f0/ijn-13-1471Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/3adf2883f6a8/ijn-13-1471Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/4503424d4944/ijn-13-1471Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b56/5856030/c83971f1615b/ijn-13-1471Fig6.jpg

相似文献

[1]
Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

Int J Nanomedicine. 2018-3-12

[2]
Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma.

Neuro Oncol. 2013-12-4

[3]
Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors.

Int J Nanomedicine. 2014-1-3

[4]
Efficient MRI labeling of endothelial progenitor cells: design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles.

Eur J Pharm Biopharm. 2013-11

[5]
Clustering superparamagnetic iron oxide nanoparticles produces organ-targeted high-contrast magnetic resonance images.

Nanomedicine (Lond). 2019-5-3

[6]
Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool.

J Cell Physiol. 2018-8-26

[7]
High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging.

Int J Nanomedicine. 2015-2-5

[8]
Targeting chemo-proton therapy on C6 cell line using superparamagnetic iron oxide nanoparticles conjugated with folate and paclitaxel.

Int J Radiat Biol. 2018-11

[9]
Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma.

Neoplasia. 2015-1

[10]
Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1).

Nanoscale. 2015-11-24

引用本文的文献

[1]
Challenges and advances for glioma therapy based on inorganic nanoparticles.

Mater Today Bio. 2023-6-1

[2]
Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM).

Cancers (Basel). 2023-4-1

[3]
Smart Nanoformulations for Brain Cancer Theranostics: Challenges and Promises.

Cancers (Basel). 2022-11-1

[4]
Conjugated PNC-27 peptide/PEI-superparamagnetic iron oxide nanoparticles (SPIONs) as a double targeting agent for early cancer diagnosis: study.

Iran J Basic Med Sci. 2022-10

[5]
Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches.

Polymers (Basel). 2022-7-21

[6]
Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update.

Biomedicines. 2022-7-5

[7]
Ultrasound-mediated delivery of RGD-conjugated nanobubbles loaded with fingolimod and superparamagnetic iron oxide nanoparticles: targeting hepatocellular carcinoma and enhancing magnetic resonance imaging.

RSC Adv. 2020-10-27

[8]
Pharmacokinetics study of chitosan-coated liposomes containing sumatriptan in the treatment of migraine.

Caspian J Intern Med. 2022

[9]
Aspects of high-performance and bio-acceptable magnetic nanoparticles for biomedical application.

Asian J Pharm Sci. 2021-11

[10]
Innovative Approaches of Engineering Tumor-Targeting Bacteria with Different Therapeutic Payloads to Fight Cancer: A Smart Strategy of Disease Management.

Int J Nanomedicine. 2021

本文引用的文献

[1]
European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas.

Lancet Oncol. 2017-5-5

[2]
Nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG containing curcumin: In vitro evaluation and pharmacokinetics in rats.

Int J Biol Macromol. 2017-9

[3]
Targeted Nanotechnology in Glioblastoma Multiforme.

Front Pharmacol. 2017-3-31

[4]
TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy.

Mater Sci Eng C Mater Biol Appl. 2017-2-4

[5]
Vitamin E Succinate-Grafted-Chitosan Oligosaccharide/RGD-Conjugated TPGS Mixed Micelles Loaded with Paclitaxel for U87MG Tumor Therapy.

Mol Pharm. 2017-4-3

[6]
Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma.

Carbohydr Polym. 2016-9-28

[7]
Targeted brain delivery nanoparticles for malignant gliomas.

Nanomedicine (Lond). 2016-11-23

[8]
iRGD-mediated core-shell nanoparticles loading carmustine and O-benzylguanine for glioma therapy.

J Drug Target. 2017-3

[9]
Recent Developments of Magnetic Nanoparticles for Theranostics of Brain Tumor.

Curr Drug Metab. 2016

[10]
Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial.

JAMA. 2015-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索