Suppr超能文献

马尔可夫状态模型有助于深入了解蛋白质功能的动态调节。

Markov state models provide insights into dynamic modulation of protein function.

作者信息

Shukla Diwakar, Hernández Carlos X, Weber Jeffrey K, Pande Vijay S

机构信息

Department of Chemistry, ‡Biophysics Program, and §SIMBIOS, NIH Center for Biomedical Computation, Stanford University , Stanford, California 94305, United States.

出版信息

Acc Chem Res. 2015 Feb 17;48(2):414-22. doi: 10.1021/ar5002999. Epub 2015 Jan 3.

Abstract

CONSPECTUS

Protein function is inextricably linked to protein dynamics. As we move from a static structural picture to a dynamic ensemble view of protein structure and function, novel computational paradigms are required for observing and understanding conformational dynamics of proteins and its functional implications. In principle, molecular dynamics simulations can provide the time evolution of atomistic models of proteins, but the long time scales associated with functional dynamics make it difficult to observe rare dynamical transitions. The issue of extracting essential functional components of protein dynamics from noisy simulation data presents another set of challenges in obtaining an unbiased understanding of protein motions. Therefore, a methodology that provides a statistical framework for efficient sampling and a human-readable view of the key aspects of functional dynamics from data analysis is required. The Markov state model (MSM), which has recently become popular worldwide for studying protein dynamics, is an example of such a framework. In this Account, we review the use of Markov state models for efficient sampling of the hierarchy of time scales associated with protein dynamics, automatic identification of key conformational states, and the degrees of freedom associated with slow dynamical processes. Applications of MSMs for studying long time scale phenomena such as activation mechanisms of cellular signaling proteins has yielded novel insights into protein function. In particular, from MSMs built using large-scale simulations of GPCRs and kinases, we have shown that complex conformational changes in proteins can be described in terms of structural changes in key structural motifs or "molecular switches" within the protein, the transitions between functionally active and inactive states of proteins proceed via multiple pathways, and ligand or substrate binding modulates the flux through these pathways. Finally, MSMs also provide a theoretical toolbox for studying the effect of nonequilibrium perturbations on conformational dynamics. Considering that protein dynamics in vivo occur under nonequilibrium conditions, MSMs coupled with nonequilibrium statistical mechanics provide a way to connect cellular components to their functional environments. Nonequilibrium perturbations of protein folding MSMs reveal the presence of dynamically frozen glass-like states in their conformational landscape. These frozen states are also observed to be rich in β-sheets, which indicates their possible role in the nucleation of β-sheet rich aggregates such as those observed in amyloid-fibril formation. Finally, we describe how MSMs have been used to understand the dynamical behavior of intrinsically disordered proteins such as amyloid-β, human islet amyloid polypeptide, and p53. While certainly not a panacea for studying functional dynamics, MSMs provide a rigorous theoretical foundation for understanding complex entropically dominated processes and a convenient lens for viewing protein motions.

摘要

综述

蛋白质功能与蛋白质动力学紧密相连。随着我们从蛋白质结构的静态图像转向动态整体视图,需要新的计算范式来观察和理解蛋白质的构象动力学及其功能含义。原则上,分子动力学模拟可以提供蛋白质原子模型的时间演化,但与功能动力学相关的长时间尺度使得观察罕见的动力学转变变得困难。从嘈杂的模拟数据中提取蛋白质动力学的基本功能成分的问题,在获得对蛋白质运动的无偏理解方面提出了另一组挑战。因此,需要一种方法,为高效采样提供统计框架,并从数据分析中提供功能动力学关键方面的人类可读视图。马尔可夫状态模型(MSM)最近在全球范围内因研究蛋白质动力学而受到欢迎,就是这样一个框架的例子。在本综述中,我们回顾了马尔可夫状态模型在有效采样与蛋白质动力学相关的时间尺度层次结构、自动识别关键构象状态以及与缓慢动力学过程相关的自由度方面的应用。MSM在研究长时间尺度现象(如细胞信号蛋白的激活机制)方面的应用,为蛋白质功能带来了新的见解。特别是,通过使用GPCR和激酶的大规模模拟构建的MSM,我们表明蛋白质中的复杂构象变化可以用蛋白质内关键结构基序或“分子开关”的结构变化来描述,蛋白质功能活性和非活性状态之间的转变通过多种途径进行,配体或底物结合调节通过这些途径的通量。最后,MSM还为研究非平衡扰动对构象动力学的影响提供了一个理论工具箱。考虑到体内蛋白质动力学发生在非平衡条件下,MSM与非平衡统计力学相结合提供了一种将细胞成分与其功能环境联系起来的方法。蛋白质折叠MSM的非平衡扰动揭示了其构象景观中存在动态冻结的玻璃状状态。还观察到这些冻结状态富含β折叠,这表明它们在富含β折叠聚集体的成核中可能发挥的作用,例如在淀粉样纤维形成中观察到的那些。最后,我们描述了MSM如何用于理解内在无序蛋白质(如淀粉样β蛋白、人胰岛淀粉样多肽和p53)的动力学行为。虽然MSM肯定不是研究功能动力学的万灵药,但它为理解复杂的熵主导过程提供了一个严格的理论基础,也是观察蛋白质运动的一个方便视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5265/4333613/cd72d08848b5/ar-2014-002999_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验