Suppr超能文献

马尔可夫状态模型揭示了控制昼夜节律周期的酪蛋白激酶1动力学。

Markovian State Models uncover Casein Kinase 1 dynamics that govern circadian period.

作者信息

Ricci Clarisse Gravina, Philpott Jonathan M, Torgrimson Megan R, Freeberg Alfred M, Narasimamurthy Rajesh, de Barros Emilia Pécora, Amaro Rommie, Virshup David M, McCammon J Andrew, Partch Carrie L

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, United States.

Current address: D.E. Shaw Research, New York, New York, United States.

出版信息

bioRxiv. 2025 Jan 22:2025.01.17.633651. doi: 10.1101/2025.01.17.633651.

Abstract

Circadian rhythms in mammals are tightly regulated through phosphorylation of Period (PER) proteins by Casein Kinase 1 (CK1, subtypes δ and ε). CK1 acts on at least two different regions of PER with opposing effects: phosphorylation of phosphodegron (pD) regions leads to PER degradation, while phosphorylation of the Familial Advanced Sleep Phase (FASP) region leads to PER stabilization. To investigate how substrate selectivity is encoded by the conformational dynamics of CK1, we performed a large set of independent molecular dynamics (MD) simulations of wildtype CK1 and the mutant (R178C) that biases kinase activity toward a pD. We used Markovian State Models (MSMs) to integrate the simulations into a single model of the conformational landscape of CK1 and used Gaussian accelerated molecular dynamics (GaMD) to build the first molecular model of CK1 and the unphosphorylated FASP motif. Together, these findings provide a mechanistic view of CK1, establishing how the activation loop acts as a key molecular switch to control substrate selectivity. We show that the mutant favors an alternative conformation of the activation loop and significantly accelerates the dynamics of CK1. This reshapes the binding cleft in a way that impairs FASP binding and would ultimately lead to PER destabilization and shorter circadian periods. Finally, we identified an allosteric pocket that could be targeted to bias this molecular switch. Our integrated approach offers a detailed model of CK1's conformational landscape and its relevance to normal, mutant, and druggable circadian timekeeping.

摘要

哺乳动物的昼夜节律通过酪蛋白激酶1(CK1,亚型δ和ε)对周期蛋白(PER)进行磷酸化来严格调控。CK1作用于PER的至少两个不同区域,产生相反的效果:磷酸降解区(pD)的磷酸化导致PER降解,而家族性早睡相位(FASP)区域的磷酸化导致PER稳定。为了研究CK1的构象动力学如何编码底物选择性,我们对野生型CK1和偏向于对pD进行激酶活性的突变体(R178C)进行了大量独立的分子动力学(MD)模拟。我们使用马尔可夫状态模型(MSM)将模拟整合到CK1构象景观的单一模型中,并使用高斯加速分子动力学(GaMD)构建CK1和未磷酸化FASP基序的第一个分子模型。这些发现共同提供了CK1的机制视图,确定了激活环如何作为控制底物选择性的关键分子开关。我们表明,突变体有利于激活环的另一种构象,并显著加速CK1的动力学。这以损害FASP结合的方式重塑了结合裂隙,并最终导致PER不稳定和更短的昼夜周期。最后,我们确定了一个变构口袋,可以针对该口袋来偏向这个分子开关。我们的综合方法提供了CK1构象景观及其与正常、突变和可药物化昼夜节律计时相关性的详细模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1fb/11785140/0731f995839a/nihpp-2025.01.17.633651v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验