Yuan Li-Yong, Sun Man, Mei Lei, Wang Lin, Zheng Li-Rong, Gao Zeng-Qiang, Zhang Jing, Zhao Yu-Liang, Chai Zhi-Fang, Shi Wei-Qun
Key Laboratory of Nuclear Radiation and Nuclear Energy Technology and Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China.
Inorg Chem. 2015 Feb 16;54(4):1992-9. doi: 10.1021/ic502890w. Epub 2015 Jan 28.
Room temperature ionic liquids (RTILs) represent a recent new class of solvents applied in liquid/liquid extraction based nuclear fuel reprocessing, whereas the related coordination chemistry and detailed extraction processes are still not well understood and remain of deep fundamental interest. The work herein provides a new insight of coordination and extraction of uranium(VI) with N-donating ligands, e.g., N,N'-diethyl-N,N'-ditolyldipicolinamide (EtpTDPA), in commonly used RTILs. Exploration of the extraction mechanism, speciation analyses of the extracted U(VI), and crystallographic studies of the interactions of EtpTDPA with U(VI) were performed, including the first structurally characterized UO2(EtpTDPA)2(NTf2) and UO2(EtpTDPA)2(PF6)2 compounds and a first case of crystallographic differentiation between the extracted U(VI) complexes in RTILs and in molecular solvents. It was found that in RTILs two EtpTDPA molecules coordinate with one U(VI) ion through the carbonyl and pyridine nitrogen moieties, while NTf2(-) and PF6(-) act as counterions. The absence of NO3(-) in the complexes is coincident with a cation-exchange extraction. In contrast, both the extracted species and extraction mechanisms are greatly different in dichloromethane, in which UO2(2+) coordinates in a neutral complex form with one EtpTDPA molecule and two NO3(-) cations. In addition, the complex formation in RTILs is independent of the cation exchange since incorporating UO2(NO3)2, EtpTDPA, and LiNTf2 or KPF6 in a solution also produces the same complex as that in RTILs, revealing the important roles of weakly coordinating anions on the coordination chemistry between U(VI) and EtpTDPA. These findings suggest that cation-exchange extraction mode for ILs-based extraction system probably originates from the supply of weakly coordinating anions from RTILs. Thus the coordination of uranium(VI) with extractants as well as the cation-exchange extraction mode may be potentially changed by varying the counterions of uranyl or introducing extra anions.
室温离子液体(RTILs)是近年来应用于基于液/液萃取的核燃料后处理中的一类新型溶剂,然而相关的配位化学和详细的萃取过程仍未得到充分理解,仍然具有深厚的基础研究价值。本文的工作为在常用的室温离子液体中用含氮配体(如N,N'-二乙基-N,N'-二甲基二吡啶甲酰胺(EtpTDPA))配位和萃取铀(VI)提供了新的见解。进行了萃取机理的探索、萃取的U(VI)的形态分析以及EtpTDPA与U(VI)相互作用的晶体学研究,包括首次通过结构表征的UO2(EtpTDPA)2(NTf2)和UO2(EtpTDPA)2(PF6)2化合物,以及室温离子液体和分子溶剂中萃取的U(VI)配合物之间晶体学差异的首个案例。研究发现,在室温离子液体中,两个EtpTDPA分子通过羰基和吡啶氮部分与一个U(VI)离子配位,而NTf2(-)和PF6(-)作为抗衡离子。配合物中不存在NO3(-)与阳离子交换萃取一致。相比之下,在二氯甲烷中,萃取的物种和萃取机理有很大不同,其中UO2(2+)以中性配合物形式与一个EtpTDPA分子和两个NO3(-)阳离子配位。此外,室温离子液体中的配合物形成与阳离子交换无关,因为在溶液中加入UO2(NO3)2、EtpTDPA和LiNTf2或KPF6也会产生与室温离子液体中相同的配合物,揭示了弱配位阴离子在U(VI)与EtpTDPA之间配位化学中的重要作用。这些发现表明,基于离子液体的萃取系统的阳离子交换萃取模式可能源于室温离子液体中弱配位阴离子的供应。因此,通过改变铀酰的抗衡离子或引入额外的阴离子,铀(VI)与萃取剂的配位以及阳离子交换萃取模式可能会发生潜在变化。