Suppr超能文献

一种用于具有异质性、非正态性、缺失值和协变量测量误差的纵向数据的分层联合模型混合物。

A mixture of hierarchical joint models for longitudinal data with heterogeneity, non-normality, missingness, and covariate measurement error.

作者信息

Huang Yangxin, Yan Chunning, Yin Ping, Lu Meixia

机构信息

a Department of Epidemiology and Biostatistics, College of Public Health , University of South Florida , Tampa , Florida , USA.

b School of Management , Shanghai University , Shanghai , P.R. China.

出版信息

J Biopharm Stat. 2016;26(2):299-322. doi: 10.1080/10543406.2014.1000547. Epub 2015 Jan 28.

Abstract

Longitudinal data arise frequently in medical studies and it is a common practice to analyze such complex data with nonlinear mixed-effects (NLME) models. However, the following four issues may be critical in longitudinal data analysis. (i) A homogeneous population assumption for models may be unrealistically obscuring important features of between-subject and within-subject variations; (ii) normality assumption for model errors may not always give robust and reliable results, in particular, if the data exhibit skewness; (iii) the responses may be missing and the missingness may be nonignorable; and (iv) some covariates of interest may often be measured with substantial errors. When carrying out statistical inference in such settings, it is important to account for the effects of these data features; otherwise, erroneous or even misleading results may be produced. Inferential procedures can be complicated dramatically when these four data features arise. In this article, the Bayesian joint modeling approach based on a finite mixture of NLME joint models with skew distributions is developed to study simultaneous impact of these four data features, allowing estimates of both model parameters and class membership probabilities at population and individual levels. A real data example is analyzed to demonstrate the proposed methodologies, and to compare various scenarios-based potential models with different specifications of distributions.

摘要

纵向数据在医学研究中经常出现,使用非线性混合效应(NLME)模型分析此类复杂数据是一种常见做法。然而,在纵向数据分析中,以下四个问题可能至关重要。(i)模型的同质总体假设可能不切实际地掩盖了个体间和个体内变异的重要特征;(ii)模型误差的正态性假设可能并不总是能给出稳健可靠的结果,特别是当数据呈现偏态时;(iii)响应可能缺失,且缺失可能不可忽略;(iv)一些感兴趣的协变量往往可能存在较大测量误差。在此类情况下进行统计推断时,考虑这些数据特征的影响很重要;否则,可能会产生错误甚至误导性的结果。当出现这四个数据特征时,推断过程可能会显著复杂化。在本文中,基于具有偏态分布的NLME联合模型的有限混合的贝叶斯联合建模方法被开发出来,以研究这四个数据特征的同时影响,从而在总体和个体层面估计模型参数和类别成员概率。分析了一个实际数据示例,以展示所提出的方法,并比较具有不同分布规格的各种基于场景的潜在模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验