Suppr超能文献

超声辅助生物柴油生产芝麻(Sesamum indicum L.)油用氢氧化钡作为非均相催化剂:响应面法(RSM)和人工神经网络(ANN)预测能力的比较评估。

Ultrasound assisted biodiesel production from sesame (Sesamum indicum L.) oil using barium hydroxide as a heterogeneous catalyst: Comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN).

机构信息

Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur (M.H.) 440010, India.

Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur (M.H.) 440010, India.

出版信息

Ultrason Sonochem. 2015 Sep;26:218-228. doi: 10.1016/j.ultsonch.2015.01.013. Epub 2015 Jan 20.

Abstract

The present study estimates the prediction capability of response surface methodology (RSM) and artificial neural network (ANN) models for biodiesel synthesis from sesame (Sesamum indicum L.) oil under ultrasonication (20 kHz and 1.2 kW) using barium hydroxide as a basic heterogeneous catalyst. RSM based on a five level, four factor central composite design, was employed to obtain the best possible combination of catalyst concentration, methanol to oil molar ratio, temperature and reaction time for maximum FAME content. Experimental data were evaluated by applying RSM integrating with desirability function approach. The importance of each independent variable on the response was investigated by using sensitivity analysis. The optimum conditions were found to be catalyst concentration (1.79 wt%), methanol to oil molar ratio (6.69:1), temperature (31.92°C), and reaction time (40.30 min). For these conditions, experimental FAME content of 98.6% was obtained, which was in reasonable agreement with predicted one. The sensitivity analysis confirmed that catalyst concentration was the main factors affecting the FAME content with the relative importance of 36.93%. The lower values of correlation coefficient (R(2)=0.781), root mean square error (RMSE=4.81), standard error of prediction (SEP=6.03) and relative percent deviation (RPD=4.92) for ANN compared to those R(2) (0.596), RMSE (6.79), SEP (8.54) and RPD (6.48) for RSM proved better prediction capability of ANN in predicting the FAME content.

摘要

本研究采用超声(20 kHz 和 1.2 kW)技术,以氢氧化钡为碱性非均相催化剂,从芝麻(Sesamum indicum L.)油中合成生物柴油,评估响应面法(RSM)和人工神经网络(ANN)模型的预测能力。基于五水平、四因素中心复合设计的 RSM 用于获得最大 FAME 含量的最佳催化剂浓度、甲醇与油摩尔比、温度和反应时间组合。通过应用 RSM 与可接受性函数方法对实验数据进行评估。通过敏感性分析研究了每个独立变量对响应的重要性。发现最佳条件为催化剂浓度(1.79wt%)、甲醇与油摩尔比(6.69:1)、温度(31.92°C)和反应时间(40.30 min)。在这些条件下,实验得到的 FAME 含量为 98.6%,与预测值吻合良好。敏感性分析证实,催化剂浓度是影响 FAME 含量的主要因素,相对重要性为 36.93%。与 RSM 的相关系数(R(2)=0.781)、均方根误差(RMSE=4.81)、预测标准误差(SEP=6.03)和相对偏差百分比(RPD=4.92)相比,ANN 的这些值较低(R(2)=0.596),RMSE(6.79),SEP(8.54)和 RPD(6.48),表明 ANN 在预测 FAME 含量方面具有更好的预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验