Suppr超能文献

癌症蛋白质组学中肿瘤标志物选择与样本分类的计算进展

Computational advances of tumor marker selection and sample classification in cancer proteomics.

作者信息

Tang Jing, Wang Yunxia, Luo Yongchao, Fu Jianbo, Zhang Yang, Li Yi, Xiao Ziyu, Lou Yan, Qiu Yunqing, Zhu Feng

机构信息

Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

出版信息

Comput Struct Biotechnol J. 2020 Jul 17;18:2012-2025. doi: 10.1016/j.csbj.2020.07.009. eCollection 2020.

Abstract

Cancer proteomics has become a powerful technique for characterizing the protein markers driving transformation of malignancy, tracing proteome variation triggered by therapeutics, and discovering the novel targets and drugs for the treatment of oncologic diseases. To facilitate cancer diagnosis/prognosis and accelerate drug target discovery, a variety of methods for tumor marker identification and sample classification have been developed and successfully applied to cancer proteomic studies. This review article describes the most recent advances in those various approaches together with their current applications in cancer-related studies. Firstly, a number of popular feature selection methods are overviewed with objective evaluation on their advantages and disadvantages. Secondly, these methods are grouped into three major classes based on their underlying algorithms. Finally, a variety of sample separation algorithms are discussed. This review provides a comprehensive overview of the advances on tumor maker identification and patients/samples/tissues separations, which could be guidance to the researches in cancer proteomics.

摘要

癌症蛋白质组学已成为一种强大的技术,可用于表征驱动恶性肿瘤转化的蛋白质标志物、追踪治疗引发的蛋白质组变化,以及发现治疗肿瘤疾病的新靶点和药物。为了促进癌症诊断/预后评估并加速药物靶点发现,已开发出多种肿瘤标志物鉴定和样本分类方法,并成功应用于癌症蛋白质组学研究。这篇综述文章介绍了这些不同方法的最新进展及其在癌症相关研究中的当前应用。首先,概述了一些流行的特征选择方法,并对其优缺点进行了客观评估。其次,根据其基础算法将这些方法分为三大类。最后,讨论了各种样本分离算法。本综述全面概述了肿瘤标志物鉴定以及患者/样本/组织分离方面的进展,可为癌症蛋白质组学研究提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验