Rellinger Eric J, Romain Carmelle, Choi SunPhil, Qiao Jingbo, Chung Dai H
Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
Pediatr Blood Cancer. 2015 Apr;62(4):581-6. doi: 10.1002/pbc.25348. Epub 2015 Jan 28.
Under normoxic conditions, cancer cells use aerobic glycolysis as opposed to glucose oxidation for energy production; this altered metabolism correlates with poor outcomes in neuroblastoma. Hypoxia-inducible factor-1 alpha (HIF-1α) and pyruvate dehydrogenase kinase 4 (PDK4) regulate aerobic glycolysis, while pyruvate dehydrogenase phosphatase 2 (PDP2) promotes glucose oxidation. Here, we sought to determine whether gastrin-releasing peptide receptor (GRP-R) signaling regulates glucose metabolism.
Neuroblastoma cell lines, BE(2)-C and SK-N-AS, were used. PCR microararay for glucose metabolism was performed on GRP-R silenced cells. Target protein expression was validated using Western blotting and VEGF ELISA. Cobalt chloride (CoCl2 ) was used to induce chemical hypoxia. Efficacy of targeting PDK regulation in neuroblastoma was assessed using dichloroacetate (DCA) by conducting cell viability assays and Western blotting for apoptotic markers.
Silencing GRP-R decreased HIF-1α expression and blocked VEGF expression and secretion in both normoxic and CoCl2 induced hypoxia. PCR array analysis identified that GRP-R silencing reduced PDK4 and increased PDP2 mRNA expression. These findings were validated by Western blotting. CoCl2 induced hypoxia increased VEGF secretion, HIF-1α, and PDK4 expression. PDK4 silencing decreased HIF-1α expression and VEGF expression and secretion. DCA treatment decreased BE(2)-C and SK-N-AS proliferation while promoting cell death. GRP-R silencing and DCA treatment synergistically halted BE(2)-C proliferation.
We report that GRP-R regulates glucose metabolism in neuroblastoma by modulating HIF-1α, PDK4 and PDP2. PDK4 regulates glucose metabolism, in part, via regulation of HIF-1α. Synergistic consequences of GRP-R inhibition and DCA treatment may suggest a novel therapeutic strategy for the treatment of aggressive neuroblastoma.
在常氧条件下,癌细胞利用有氧糖酵解而非葡萄糖氧化来产生能量;这种代谢改变与神经母细胞瘤的不良预后相关。缺氧诱导因子-1α(HIF-1α)和丙酮酸脱氢酶激酶4(PDK4)调节有氧糖酵解,而丙酮酸脱氢酶磷酸酶2(PDP2)促进葡萄糖氧化。在此,我们试图确定胃泌素释放肽受体(GRP-R)信号是否调节葡萄糖代谢。
使用神经母细胞瘤细胞系BE(2)-C和SK-N-AS。对GRP-R沉默的细胞进行葡萄糖代谢的PCR微阵列分析。使用蛋白质免疫印迹法和VEGF酶联免疫吸附测定法验证靶蛋白表达。用氯化钴(CoCl2)诱导化学性缺氧。通过进行细胞活力测定和凋亡标志物的蛋白质免疫印迹法,使用二氯乙酸(DCA)评估在神经母细胞瘤中靶向PDK调节的效果。
沉默GRP-R可降低HIF-1α表达,并在常氧和CoCl2诱导的缺氧条件下均阻断VEGF表达和分泌。PCR阵列分析确定GRP-R沉默可降低PDK4并增加PDP2 mRNA表达。这些发现通过蛋白质免疫印迹法得到验证。CoCl2诱导的缺氧增加了VEGF分泌、HIF-1α和PDK4表达。PDK4沉默降低了HIF-1α表达以及VEGF表达和分泌。DCA处理降低了BE(2)-C和SK-N-AS的增殖,同时促进细胞死亡。GRP-R沉默和DCA处理协同抑制了BE(2)-C的增殖。
我们报告GRP-R通过调节HIF-1α、PDK4和PDP2来调节神经母细胞瘤中的葡萄糖代谢。PDK4部分通过调节HIF-1α来调节葡萄糖代谢。GRP-R抑制和DCA处理的协同作用可能提示一种治疗侵袭性神经母细胞瘤的新策略。