Suppr超能文献

结构化效益-风险评估中概率敏感性分析的贝叶斯方法。

A Bayesian approach to probabilistic sensitivity analysis in structured benefit-risk assessment.

作者信息

Waddingham Ed, Mt-Isa Shahrul, Nixon Richard, Ashby Deborah

机构信息

Imperial Clinical Trials Unit, School of Public Health, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK.

Statistical Methodology and Consulting, Novartis Pharma AG, Postfach, CH-4002 Basel, Switzerland.

出版信息

Biom J. 2016 Jan;58(1):28-42. doi: 10.1002/bimj.201300254. Epub 2015 Jan 28.

Abstract

Quantitative decision models such as multiple criteria decision analysis (MCDA) can be used in benefit-risk assessment to formalize trade-offs between benefits and risks, providing transparency to the assessment process. There is however no well-established method for propagating uncertainty of treatment effects data through such models to provide a sense of the variability of the benefit-risk balance. Here, we present a Bayesian statistical method that directly models the outcomes observed in randomized placebo-controlled trials and uses this to infer indirect comparisons between competing active treatments. The resulting treatment effects estimates are suitable for use within the MCDA setting, and it is possible to derive the distribution of the overall benefit-risk balance through Markov Chain Monte Carlo simulation. The method is illustrated using a case study of natalizumab for relapsing-remitting multiple sclerosis.

摘要

定量决策模型,如多标准决策分析(MCDA),可用于效益-风险评估,以规范效益与风险之间的权衡,为评估过程提供透明度。然而,目前尚无成熟的方法将治疗效果数据的不确定性通过此类模型进行传播,以了解效益-风险平衡的变异性。在此,我们提出一种贝叶斯统计方法,该方法直接对随机安慰剂对照试验中观察到的结果进行建模,并以此推断竞争性活性治疗之间的间接比较。由此得出的治疗效果估计值适用于MCDA框架,并且可以通过马尔可夫链蒙特卡罗模拟得出总体效益-风险平衡的分布。通过natalizumab治疗复发缓解型多发性硬化症的案例研究对该方法进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验