Suppr超能文献

贝叶斯框架下的决策分析经济模型:在剖宫产预防性抗生素使用中的应用

Decision analytical economic modelling within a Bayesian framework: application to prophylactic antibiotics use for caesarean section.

作者信息

Cooper N J, Sutton A J, Abrams K R

机构信息

Department of Epidemiology and Public Health, University of Leicester, Leicester, UK.

出版信息

Stat Methods Med Res. 2002 Dec;11(6):491-512. doi: 10.1191/0962280202sm306ra.

Abstract

Economic evaluation of health care interventions based on decision analytic modelling can generate valuable information for health policy decision makers. However, the usefulness of the results obtained depends on the quality of the data input into the model; that is, the accuracy of the estimates for the costs, effectiveness, and transition probabilities between the different health states of the model. The aim of this paper is to review the use of Bayesian decision models in economic evaluation and to demonstrate how the individual components required for decision analytical modelling (i.e., systematic review incorporating meta-analyses, estimation of transition probabilities, evaluation of the model, and sensitivity analysis) may be addressed simultaneously in one coherent Bayesian model evaluated using Markov Chain Monte Carlo simulation implemented in the specialist Bayesian statistics software WinBUGS. To illustrate the method described, a simple probabilistic decision model is developed to evaluate the cost implications of using prophylactic antibiotics in caesarean section to reduce the incidence of wound infection. The advantages of using the Bayesian statistical approach outlined compared to the conventional classical approaches to decision analysis include the ability to: (i) perform all necessary analyses, including all intermediate analyses (e.g., meta-analyses) required to derive model parameters, in a single coherent model; (ii) incorporate expert opinion either directly or regarding the relative credibility of different data sources; (iii) use the actual posterior distributions for parameters of interest (opposed to making distributional assumptions necessary for the classical formulation); and (iv) incorporate uncertainty for all model parameters.

摘要

基于决策分析模型的医疗保健干预措施的经济评估可以为卫生政策决策者提供有价值的信息。然而,所获得结果的有用性取决于输入模型的数据质量;也就是说,取决于模型不同健康状态之间成本、效果和转移概率估计的准确性。本文的目的是回顾贝叶斯决策模型在经济评估中的应用,并展示决策分析模型所需的各个组成部分(即纳入荟萃分析的系统评价、转移概率估计、模型评估和敏感性分析)如何在使用专业贝叶斯统计软件WinBUGS实施的马尔可夫链蒙特卡罗模拟评估的一个连贯贝叶斯模型中同时得到解决。为了说明所描述的方法,开发了一个简单的概率决策模型,以评估在剖宫产中使用预防性抗生素以降低伤口感染发生率的成本影响。与传统的经典决策分析方法相比,使用所述贝叶斯统计方法的优点包括能够:(i)在一个连贯的模型中进行所有必要的分析,包括推导模型参数所需的所有中间分析(如荟萃分析);(ii)直接纳入专家意见或关于不同数据源的相对可信度;(iii)使用感兴趣参数的实际后验分布(而不是进行经典公式所需的分布假设);以及(iv)纳入所有模型参数的不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验