Suppr超能文献

蜘蛛能纺出带电的纳米纤维。

Spiders spinning electrically charged nano-fibres.

作者信息

Kronenberger Katrin, Vollrath Fritz

机构信息

Oxford Silk Group, Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK.

Oxford Silk Group, Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK

出版信息

Biol Lett. 2015 Jan;11(1):20140813. doi: 10.1098/rsbl.2014.0813.

Abstract

Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland-duct-spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders.

摘要

大多数蜘蛛丝的尺寸在微米和亚微米级别。然而,有一些蜘蛛能纺出真正的纳米级纤维,比如cribellate orb蜘蛛(Uloborus plumipes)。在此,我们分析了这种蜘蛛高度专业化的捕捉丝纺丝系统,并将其与更常见的蜘蛛拖丝的丝挤出系统进行比较。cribellar丝挤出系统由微小的、形态基本的腺体组成,每个腺体通过异常细长的导管在形状独特的丝出口处终止。根据蜘蛛大小,数百到数千个这样的出口小孔覆盖在cribellum上,cribellum是一个系统发育上古老的纺丝板。我们展示了cribellate腺 - 导管 - 小孔系统独特的功能设计细节,并讨论了其特殊纤维的设计要求。纳米级纤维的纺丝似乎得益于一种高度专业化的直接纺丝方式的进化,这种方式不同于其他蜘蛛更典型的水溶丝挤出装置。

相似文献

1
Spiders spinning electrically charged nano-fibres.
Biol Lett. 2015 Jan;11(1):20140813. doi: 10.1098/rsbl.2014.0813.
2
Cribellate thread production in spiders: Complex processing of nano-fibres into a functional capture thread.
Arthropod Struct Dev. 2015 Nov;44(6 Pt A):568-73. doi: 10.1016/j.asd.2015.07.003. Epub 2015 Aug 4.
4
Adhesive efficiency of spider prey capture threads.
Zoology (Jena). 2009;112(1):16-26. doi: 10.1016/j.zool.2008.04.002. Epub 2008 Sep 9.
5
Cribellate thread production as model for spider's spinneret kinematics.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2021 Mar;207(2):127-139. doi: 10.1007/s00359-020-01460-4. Epub 2021 Jan 23.
6
Spinning an elastic ribbon of spider silk.
Philos Trans R Soc Lond B Biol Sci. 2002 Feb 28;357(1418):219-27. doi: 10.1098/rstb.2001.1026.
7
Capture silk scaffold production in the cribellar web spider.
Appl Microsc. 2021 Jul 13;51(1):11. doi: 10.1186/s42649-021-00061-y.
8
Behavioural and biomaterial coevolution in spider orb webs.
J Evol Biol. 2010 Sep 1;23(9):1839-56. doi: 10.1111/j.1420-9101.2010.02048.x. Epub 2010 Jul 12.
10
Silk genes and silk gene expression in the spider Tengella perfuga (Zoropsidae), including a potential cribellar spidroin (CrSp).
PLoS One. 2018 Sep 20;13(9):e0203563. doi: 10.1371/journal.pone.0203563. eCollection 2018.

引用本文的文献

2
Capture silk scaffold production in the cribellar web spider.
Appl Microsc. 2021 Jul 13;51(1):11. doi: 10.1186/s42649-021-00061-y.
3
Mesoscale structure development reveals when a silkworm silk is spun.
Nat Commun. 2021 Jun 17;12(1):3711. doi: 10.1038/s41467-021-23960-w.
4
Functional trade-offs in cribellate silk mediated by spinning behavior.
Sci Rep. 2019 Jun 24;9(1):9092. doi: 10.1038/s41598-019-45552-x.
5
Morphological adaptation of the calamistrum to the cribellate spinning process in Deinopoidae (Uloboridae, Deinopidae).
R Soc Open Sci. 2016 Feb 24;3(2):150617. doi: 10.1098/rsos.150617. eCollection 2016 Feb.
6
Adhesion of dry and wet electrostatic capture silk of uloborid spider.
Naturwissenschaften. 2015 Aug;102(7-8):41. doi: 10.1007/s00114-015-1291-6. Epub 2015 Jul 7.

本文引用的文献

1
2
Consequences of electrical conductivity in an orb spider's capture web.
Naturwissenschaften. 2013 Dec;100(12):1163-9. doi: 10.1007/s00114-013-1120-8. Epub 2013 Dec 10.
3
Chitin in the silk gland ducts of the spider Nephila edulis and the silkworm Bombyx mori.
PLoS One. 2013 Aug 28;8(8):e73225. doi: 10.1371/journal.pone.0073225. eCollection 2013.
4
Structure and function of the major ampullate spinning duct of the golden orb weaver, Nephila edulis.
Tissue Cell. 2013 Oct;45(5):306-11. doi: 10.1016/j.tice.2013.04.001. Epub 2013 May 9.
5
Spider silk: super material or thin fibre?
Adv Mater. 2013 Mar 6;25(9):1275-9. doi: 10.1002/adma.201204158. Epub 2012 Nov 26.
6
Electrospinning versus fibre production methods: from specifics to technological convergence.
Chem Soc Rev. 2012 Jul 7;41(13):4708-35. doi: 10.1039/c2cs35083a. Epub 2012 May 22.
7
Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.
PLoS One. 2012;7(5):e37274. doi: 10.1371/journal.pone.0037274. Epub 2012 May 15.
8
Silk and synthetic polymers: reconciling 100 degrees of separation.
Adv Mater. 2012 Jan 3;24(1):105-9, 104. doi: 10.1002/adma.201103664. Epub 2011 Nov 23.
9
Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
Dent Mater. 2010 Sep;26(9):873-80. doi: 10.1016/j.dental.2010.03.022. Epub 2010 Jun 26.
10
Adhesive efficiency of spider prey capture threads.
Zoology (Jena). 2009;112(1):16-26. doi: 10.1016/j.zool.2008.04.002. Epub 2008 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验