Suppr超能文献

性状维度解释了局部适应性的广泛差异。

Trait dimensionality explains widespread variation in local adaptation.

作者信息

MacPherson Ailene, Hohenlohe Paul A, Nuismer Scott L

机构信息

Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, ID 83844, USA.

Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, ID 83844, USA Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.

出版信息

Proc Biol Sci. 2015 Mar 7;282(1802). doi: 10.1098/rspb.2014.1570.

Abstract

All species are locked in a continual struggle to adapt to local ecological conditions. In cases where species fail to locally adapt, they face reduced population growth rates, or even local extinction. Traditional explanations for limited local adaptation focus on maladaptive gene flow or homogeneous environmental conditions. These classical explanations have, however, failed to explain variation in the magnitude of local adaptation observed across taxa. Here we show that variable levels of local adaptation are better explained by trait dimensionality. First, we develop and analyse mathematical models that predict levels of local adaptation will increase with the number of traits experiencing spatially variable selection. Next, we test this prediction by estimating the relationship between dimensionality and local adaptation using data from 35 published reciprocal transplant studies. This analysis reveals a strong correlation between dimensionality and degree of local adaptation, and thus provides empirical support for the predictions of our model.

摘要

所有物种都陷入了一场持续不断的斗争,以适应当地的生态条件。在物种无法实现局部适应的情况下,它们面临着种群增长率下降,甚至局部灭绝的问题。对于有限的局部适应,传统解释集中在适应不良的基因流动或同质的环境条件上。然而,这些经典解释未能解释不同分类群中观察到的局部适应程度的差异。在这里,我们表明局部适应的不同水平可以更好地由性状维度来解释。首先,我们开发并分析了数学模型,这些模型预测局部适应水平将随着经历空间可变选择的性状数量的增加而提高。接下来,我们通过使用来自35项已发表的相互移植研究的数据估计维度与局部适应之间的关系来检验这一预测。该分析揭示了维度与局部适应程度之间的强相关性,从而为我们模型的预测提供了实证支持。

相似文献

1
Trait dimensionality explains widespread variation in local adaptation.
Proc Biol Sci. 2015 Mar 7;282(1802). doi: 10.1098/rspb.2014.1570.
3
Does local adaptation to resources explain genetic differentiation among Daphnia populations?
Mol Ecol. 2010 Aug;19(15):3076-87. doi: 10.1111/j.1365-294X.2010.04728.x.
4
How do genetic correlations affect species range shifts in a changing environment?
Ecol Lett. 2012 Mar;15(3):251-9. doi: 10.1111/j.1461-0248.2011.01734.x. Epub 2012 Jan 17.
6
Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow.
Mol Ecol. 2010 Feb;19(4):716-31. doi: 10.1111/j.1365-294X.2009.04502.x. Epub 2010 Jan 20.
8
Local adaptation despite high gene flow in the waterfall-climbing Hawaiian goby, Sicyopterus stimpsoni.
Mol Ecol. 2015 Feb;24(3):545-63. doi: 10.1111/mec.13016. Epub 2015 Jan 9.
9
The coupling hypothesis: why genome scans may fail to map local adaptation genes.
Mol Ecol. 2011 May;20(10):2044-72. doi: 10.1111/j.1365-294X.2011.05080.x. Epub 2011 Apr 7.

引用本文的文献

1
Impacts of pleiotropy and migration on repeated genetic adaptation.
Genetics. 2024 Sep 4;228(1). doi: 10.1093/genetics/iyae111.
2
Signatures of natural selection in a foundation tree along Mediterranean climatic gradients.
Mol Ecol. 2022 Mar;31(6):1735-1752. doi: 10.1111/mec.16351. Epub 2022 Jan 27.
4
Eco-evolutionary community turnover following environmental change.
Evol Appl. 2019 Feb 20;12(7):1434-1448. doi: 10.1111/eva.12776. eCollection 2019 Aug.
5
Trait dimensionality and population choice alter estimates of phenotypic dissimilarity.
Ecol Evol. 2017 Mar 8;7(7):2273-2285. doi: 10.1002/ece3.2780. eCollection 2017 Apr.
7
Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey.
Proc Biol Sci. 2016 Apr 27;283(1829). doi: 10.1098/rspb.2015.2841.
8
Mediterranean blue tits as a case study of local adaptation.
Evol Appl. 2015 Oct 27;9(1):135-52. doi: 10.1111/eva.12282. eCollection 2016 Jan.
9
Factors influencing the effect size distribution of adaptive substitutions.
Proc Biol Sci. 2016 Apr 13;283(1828). doi: 10.1098/rspb.2015.3065.

本文引用的文献

1
An analysis of G matrix variation in two closely related cricket species, Gryllus firmus and G. pennsylvanicus.
J Evol Biol. 2001 Jan 8;14(1):1-13. doi: 10.1046/j.1420-9101.2001.00258.x.
2
GENETIC MODELS OF ADAPTATION AND GENE FLOW IN PERIPHERAL POPULATIONS.
Evolution. 1997 Feb;51(1):21-28. doi: 10.1111/j.1558-5646.1997.tb02384.x.
3
QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY.
Evolution. 1979 Mar;33(1Part2):402-416. doi: 10.1111/j.1558-5646.1979.tb04694.x.
4
NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION.
Evolution. 1976 Jun;30(2):314-334. doi: 10.1111/j.1558-5646.1976.tb00911.x.
5
Multidimensional (co)evolutionary stability.
Am Nat. 2014 Aug;184(2):158-71. doi: 10.1086/677137. Epub 2014 Jul 8.
6
Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches.
Mol Ecol. 2014 Jul;23(14):3434-51. doi: 10.1111/mec.12827. Epub 2014 Jun 26.
10
Ecological genomics of local adaptation.
Nat Rev Genet. 2013 Nov;14(11):807-20. doi: 10.1038/nrg3522.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验