Lamer Antoine, De Jonckheere Julien, Marcilly Romaric, Tavernier Benoît, Vallet Benoît, Jeanne Mathieu, Logier Régis
INSERM CIC-IT, University Hospital, 59000, Lille, France.
Pôle d'Anesthésie Réanimation, University Hospital, 59000, Lille, France.
J Clin Monit Comput. 2015 Dec;29(6):741-7. doi: 10.1007/s10877-015-9661-3. Epub 2015 Jan 30.
AIMS are optimized to find and display data and curves about one specific intervention but is not retrospective analysis on a huge volume of interventions. Such a system present two main limitation; (1) the transactional database architecture, (2) the completeness of documentation. In order to solve the architectural problem, data warehouses were developed to propose architecture suitable for analysis. However, completeness of documentation stays unsolved. In this paper, we describe a method which allows determining of substitution rules in order to detect missing anesthesia events in an anesthesia record. Our method is based on the principle that missing event could be detected using a substitution one defined as the nearest documented event. As an example, we focused on the automatic detection of the start and the end of anesthesia procedure when these events were not documented by the clinicians. We applied our method on a set of records in order to evaluate; (1) the event detection accuracy, (2) the improvement of valid records. For the year 2010-2012, we obtained event detection with a precision of 0.00 (-2.22; 2.00) min for the start of anesthesia and 0.10 (0.00; 0.35) min for the end of anesthesia. On the other hand, we increased by 21.1% the data completeness (from 80.3 to 97.2% of the total database) for the start and the end of anesthesia events. This method seems to be efficient to replace missing "start and end of anesthesia" events. This method could also be used to replace other missing time events in this particular data warehouse as well as in other kind of data warehouses.
目标旨在优化查找和显示有关一种特定干预措施的数据及曲线,但并非对大量干预措施进行回顾性分析。这样的系统存在两个主要局限性:(1)事务性数据库架构;(2)文档的完整性。为了解决架构问题,开发了数据仓库以提供适合分析的架构。然而,文档完整性问题仍未解决。在本文中,我们描述了一种方法,该方法允许确定替换规则,以便在麻醉记录中检测缺失的麻醉事件。我们的方法基于这样的原则,即可以使用定义为最近记录事件的替换事件来检测缺失事件。例如,当临床医生未记录麻醉过程的开始和结束事件时,我们专注于自动检测这些事件。我们将我们的方法应用于一组记录,以评估:(1)事件检测准确性;(2)有效记录的改善情况。对于2010 - 2012年,我们获得的麻醉开始事件检测精度为0.00(-2.22;2.00)分钟,麻醉结束事件检测精度为0.10(0.00;0.35)分钟。另一方面,我们将麻醉开始和结束事件的数据完整性提高了21.1%(从总数据库的80.3%提高到97.2%)。这种方法似乎有效地替代了缺失的“麻醉开始和结束”事件。该方法也可用于替换此特定数据仓库以及其他类型数据仓库中其他缺失的时间事件。