Smoljkić M, Vander Sloten J, Segers P, Famaey N
Biomechanics Section, Faculty of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, 2419, Leuven, Belgium,
Biomech Model Mechanobiol. 2015 Oct;14(5):1045-56. doi: 10.1007/s10237-015-0653-5. Epub 2015 Jan 30.
The mechanical properties of human biological tissue vary greatly. The determination of arterial material properties should be based on experimental data, i.e. diameter, length, intramural pressure, axial force and stress-free geometry. Currently, clinical data provide only non-invasively measured pressure-diameter data for superficial arteries (e.g. common carotid and femoral artery). The lack of information forces us to take into account certain assumptions regarding the in situ configuration to estimate material properties in vivo. This paper proposes a new, non-invasive, energy-based approach for arterial material property estimation. This approach is compared with an approach proposed in the literature. For this purpose, a simplified finite element model of an artery was used as a mock experimental situation. This method enables exact knowledge of the actual material properties, thereby allowing a quantitative evaluation of material property estimation approaches. The results show that imposing conditions on strain energy can provide a good estimation of the material properties from the non-invasively measured pressure and diameter data.
人体生物组织的力学特性差异很大。动脉材料特性的确定应基于实验数据,即直径、长度、壁内压力、轴向力和无应力几何形状。目前,临床数据仅提供浅表动脉(如颈总动脉和股动脉)的非侵入性测量压力-直径数据。信息的缺乏迫使我们考虑某些关于原位构型的假设,以估计体内的材料特性。本文提出了一种新的、基于能量的非侵入性动脉材料特性估计方法。该方法与文献中提出的方法进行了比较。为此,使用动脉的简化有限元模型作为模拟实验情况。该方法能够精确了解实际材料特性,从而对材料特性估计方法进行定量评估。结果表明,对应变能施加条件可以从非侵入性测量的压力和直径数据中很好地估计材料特性。