Johansen J, Halpern M E, Johansen K M, Keshishian H
Department of Biology, Yale University, New Haven, Connecticut 06511.
J Neurosci. 1989 Feb;9(2):710-25. doi: 10.1523/JNEUROSCI.09-02-00710.1989.
The distribution and morphology of glutamatergic synapses on Drosophila bodywall muscle fibers were examined at the single-synapse level using immunocytochemistry and electrophysiology. We find that glutamate-immunoreactive motor endings innervate the entire larval bodywall musculature, with each muscle fiber receiving at least one glutamatergic ending. The innervation is initiated at stereotyped locations on each muscle fiber from where moderately branched varicose nerve processes project over the internally facing muscle surface. Individual muscle fibers have distinct stereotypic patterns of nerve endings that occupy characteristic regions on the cell surface. The muscle-specific branching pattern of motor endings is reiterated by segmentally homologous fibers. Two morphological types of innervating nerve processes can be distinguished by their bouton size distributions: (1) Type I processes, which have localized branching and a broad size distribution of relatively large varicosities ranging up to 8 microns (mean diameter, 3.1 +/- 1.6 microns; +/- SD, n = 521), and (2) thinner Type II processes, which have a narrower distribution of small varicosities with a mean diameter of only 1.4 +/- 0.6 microns (+/- SD, n = 214). Immunoelectron microscopy with peroxidase-labeled second antibody demonstrates that the varicosities are surrounded by a subsynaptic reticulum, that they contain immunoreactive vesicles of about 30-50 nm, and thus probably represent synaptic release sites. By iontophoretic application of glutamate we mapped the responsive sites on the muscle surface and found an excellent correspondence between transmitter sensitivity and the patterns of endings as described by immunocytochemistry. In contrast to our finding of numerous glutamate iontophoresis-sensitive sites, we did not detect any aspartate-responsive muscles. These data provide strong new evidence for glutamate being an endogenous transmitter at the Drosophila larval neuromuscular junction.
利用免疫细胞化学和电生理学技术,在单突触水平上研究了果蝇体壁肌纤维上谷氨酸能突触的分布和形态。我们发现,谷氨酸免疫反应性运动终末支配整个幼虫体壁肌肉组织,每条肌纤维至少接受一个谷氨酸能终末。神经支配从每条肌纤维上的固定位置开始,从中度分支的曲张神经突起向肌纤维内表面延伸。单个肌纤维具有独特的固定神经末梢模式,这些末梢占据细胞表面的特征区域。运动终末的肌肉特异性分支模式在节段同源纤维中重复出现。根据其终扣大小分布可区分出两种形态类型的支配神经突起:(1)I型突起,具有局部分支,较大曲张的大小分布较宽,直径可达8微米(平均直径,3.1±1.6微米;±标准差,n = 521);(2)较细的II型突起,小曲张的分布较窄,平均直径仅为1.4±0.6微米(±标准差,n = 214)。用过氧化物酶标记的二抗进行免疫电子显微镜观察表明,曲张被突触下网状结构包围,其中含有约30 - 50纳米的免疫反应性囊泡,因此可能代表突触释放位点。通过离子电泳施加谷氨酸,我们绘制了肌肉表面的反应位点,发现递质敏感性与免疫细胞化学描述的末梢模式之间具有极好的对应关系。与我们发现众多对谷氨酸离子电泳敏感的位点相反,我们未检测到任何对天冬氨酸有反应的肌肉。这些数据为谷氨酸是果蝇幼虫神经肌肉接头处的内源性递质提供了有力的新证据。