Suppr超能文献

心肺复苏胸部按压模式的分类:手动与自动方法

Classification of cardiopulmonary resuscitation chest compression patterns: manual versus automated approaches.

作者信息

Wang Henry E, Schmicker Robert H, Herren Heather, Brown Siobhan, Donnelly John P, Gray Randal, Ragsdale Sally, Gleeson Andrew, Byers Adam, Jasti Jamie, Aguirre Christina, Owens Pam, Condle Joe, Leroux Brian

机构信息

Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, AL.

出版信息

Acad Emerg Med. 2015 Feb;22(2):204-11. doi: 10.1111/acem.12577. Epub 2015 Jan 29.

Abstract

OBJECTIVES

New chest compression detection technology allows for the recording and graphical depiction of clinical cardiopulmonary resuscitation (CPR) chest compressions. The authors sought to determine the inter-rater reliability of chest compression pattern classifications by human raters. Agreement with automated chest compression classification was also evaluated by computer analysis.

METHODS

This was an analysis of chest compression patterns from cardiac arrest patients enrolled in the ongoing Resuscitation Outcomes Consortium (ROC) Continuous Chest Compressions Trial. Thirty CPR process files from patients in the trial were selected. Using written guidelines, research coordinators from each of eight participating ROC sites classified each chest compression pattern as 30:2 chest compressions, continuous chest compressions (CCC), or indeterminate. A computer algorithm for automated chest compression classification was also developed for each case. Inter-rater agreement between manual classifications was tested using Fleiss's kappa. The criterion standard was defined as the classification assigned by the majority of manual raters. Agreement between the automated classification and the criterion standard manual classifications was also tested.

RESULTS

The majority of the eight raters classified 12 chest compression patterns as 30:2, 12 as CCC, and six as indeterminate. Inter-rater agreement between manual classifications of chest compression patterns was κ = 0.62 (95% confidence interval [CI] = 0.49 to 0.74). The automated computer algorithm classified chest compression patterns as 30:2 (n = 15), CCC (n = 12), and indeterminate (n = 3). Agreement between automated and criterion standard manual classifications was κ = 0.84 (95% CI = 0.59 to 0.95).

CONCLUSIONS

In this study, good inter-rater agreement in the manual classification of CPR chest compression patterns was observed. Automated classification showed strong agreement with human ratings. These observations support the consistency of manual CPR pattern classification as well as the use of automated approaches to chest compression pattern analysis.

摘要

目的

新型胸外按压检测技术可记录和以图形方式描绘临床心肺复苏(CPR)的胸外按压情况。作者试图确定人工评分者对胸外按压模式分类的评分者间可靠性。还通过计算机分析评估了与自动胸外按压分类的一致性。

方法

这是一项对参与正在进行的复苏结果联盟(ROC)持续胸外按压试验的心脏骤停患者胸外按压模式的分析。从试验中的患者选取了30份CPR过程文件。按照书面指南,来自八个参与ROC站点的研究协调员将每种胸外按压模式分类为30:2胸外按压、持续胸外按压(CCC)或不确定。还针对每个病例开发了用于自动胸外按压分类的计算机算法。使用Fleiss卡方检验手动分类之间的评分者间一致性。将标准定义为大多数手动评分者指定的分类。还测试了自动分类与标准手动分类之间的一致性。

结果

八位评分者中的大多数将12种胸外按压模式分类为30:2,12种分类为CCC,六种分类为不确定。胸外按压模式手动分类之间评分者间一致性为κ = 0.62(95%置信区间[CI] = 0.49至0.74)。自动计算机算法将胸外按压模式分类为30:2(n = 15)、CCC(n = 12)和不确定(n = 3)。自动分类与标准手动分类之间的一致性为κ = 0.84(95% CI = 0.59至0.95)。

结论

在本研究中,观察到CPR胸外按压模式手动分类中有良好的评分者间一致性。自动分类与人工评分显示出高度一致性。这些观察结果支持了手动CPR模式分类的一致性以及使用自动方法进行胸外按压模式分析。

相似文献

本文引用的文献

1
Automatic detection of chest compressions for the assessment of CPR-quality parameters.自动检测胸外按压,以评估 CPR 质量参数。
Resuscitation. 2014 Jul;85(7):957-63. doi: 10.1016/j.resuscitation.2014.04.007. Epub 2014 Apr 15.
2
Relationship between chest compression rates and outcomes from cardiac arrest.胸外按压频率与心搏骤停结局的关系。
Circulation. 2012 Jun 19;125(24):3004-12. doi: 10.1161/CIRCULATIONAHA.111.059535. Epub 2012 May 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验