Kutz Jessica L, Greaney Jody L, Santhanam Lakshmi, Alexander Lacy M
Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, PA, USA.
J Physiol. 2015 May 1;593(9):2121-9. doi: 10.1113/JP270054. Epub 2015 Mar 25.
Hydrogen sulphide (H2 S) is vasoprotective, attenuates inflammation and modulates blood pressure in animal models; however, its specific mechanistic role in the human vasculature remains unclear. In the present study, we report the novel finding that the enzymes responsible for endogenous H2 S production, cystathionine-γ-lyase and 3-mercaptopyruvate sulphurtransferase, are expressed in the human cutaneous circulation. Functionally, we show that H2 S-induced cutaneous vasodilatation is mediated, in part, by tetraethylammonium-sensitive calcium-dependent potassium channels and not by ATP-sensitive potassium channels. In addition, nitric oxide and cyclo-oxygenase-derived byproducts are required for full expression of exogenous H2 S-mediated cutaneous vasodilatation. Future investigations of the potential role for H2 S with respect to modulating vascular function in humans may have important clinical implications for understanding the mechanisms underlying vascular dysfunction characteristic of multiple cardiovascular pathologies.
The present study aimed to identify the presence of cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulphurtransferase (3-MST), which endogenously produce hydrogen sulphide (H2 S), and to functionally examine the mechanisms of H2 S-induced vasodilatation in the human cutaneous microcirculation. CSE and 3-MST were quantified in forearm skin samples from 5 healthy adults (24 ± 3 years) using western blot analysis. For functional studies, microdialysis fibres were placed in the forearm skin of 12 healthy adults (25 ± 3 years) for graded infusions (0.01-100 mm) of sodium sulphide (Na2 S) and sodium hydrogen sulphide (NaHS). To define the mechanisms mediating H2 S-induced vasodilatation, microdialysis fibres were perfused with Ringer solution (control), a ATP-sensitive potassium channel (KATP ) inhibitor, an intermediate calcium-dependent potassium channel (KCa ) inhibitor, a non-specific KCa channel inhibitor or triple blockade. To determine the interaction of H2 S-mediated vasodilatation with nitric oxide (NO) and cyclo-oxygenase (COX) signalling pathways, microdialysis fibres were perfused with Ringer solution (control), a non-specific NO synthase inhibitor, a non-selective COX inhibitor or combined inhibition during perfusion of increasing doses of Na2 S. CSE and 3-MST were expressed in all skin samples. Na2 S and NaHS elicited dose-dependent vasodilatation. Non-specific KCa channel inhibition and triple blockade blunted Na2 S-induced vasodilatation (P < 0.05), whereas KATP and intermediate KCa channel inhibition had no effect (P > 0.05). Separate and combined inhibition of NO and COX attenuated H2 S-induced vasodilatation (all P < 0.05). CSE and 3-MST are expressed in the human microvasculature. Exogenous H2 S elicits cutaneous vasodilatation mediated by KCa channels and has a functional interaction with both NO and COX vasodilatatory signalling pathways.
硫化氢(H₂S)具有血管保护作用,可减轻炎症并调节动物模型中的血压;然而,其在人体血管系统中的具体机制仍不清楚。在本研究中,我们报告了一项新发现,即负责内源性H₂S产生的酶,胱硫醚-γ-裂解酶和3-巯基丙酮酸硫转移酶,在人体皮肤循环中表达。在功能上,我们表明H₂S诱导的皮肤血管舒张部分是由四乙铵敏感的钙依赖性钾通道介导的,而不是由ATP敏感的钾通道介导的。此外,一氧化氮和环氧化酶衍生的副产物是外源性H₂S介导的皮肤血管舒张充分表达所必需的。未来关于H₂S在调节人类血管功能方面潜在作用的研究,对于理解多种心血管疾病特征性血管功能障碍的潜在机制可能具有重要的临床意义。
本研究旨在确定内源性产生硫化氢(H₂S)的胱硫醚-γ-裂解酶(CSE)和3-巯基丙酮酸硫转移酶(3-MST)的存在,并从功能上研究H₂S诱导人体皮肤微循环血管舒张的机制。使用蛋白质印迹分析对5名健康成年人(24±3岁)的前臂皮肤样本中的CSE和3-MST进行定量。对于功能研究,将微透析纤维置于12名健康成年人(25±3岁)的前臂皮肤中,用于分级输注(0.01 - 100 mM)的硫化钠(Na₂S)和硫氢化钠(NaHS)。为了确定介导H₂S诱导血管舒张的机制,用林格溶液(对照)、ATP敏感钾通道(KATP)抑制剂、中间钙依赖性钾通道(KCa)抑制剂、非特异性KCa通道抑制剂或三联阻断剂灌注微透析纤维。为了确定H₂S介导的血管舒张与一氧化氮(NO)和环氧化酶(COX)信号通路的相互作用,在灌注递增剂量的Na₂S期间,用林格溶液(对照)、非特异性NO合酶抑制剂、非选择性COX抑制剂或联合抑制剂灌注微透析纤维。CSE和3-MST在所有皮肤样本中均有表达。Na₂S和NaHS引起剂量依赖性血管舒张。非特异性KCa通道抑制和三联阻断减弱了Na₂S诱导的血管舒张(P < 0.05),而KATP和中间KCa通道抑制则无作用(P > 0.05)。单独和联合抑制NO和COX均可减弱H₂S诱导的血管舒张(所有P < 0.05)。CSE和3-MST在人体微血管中表达。外源性H₂S引起由KCa通道介导的皮肤血管舒张,并与NO和COX血管舒张信号通路具有功能相互作用。