Domínguez-García Virginia, Muñoz Miguel A
Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional: Universidad de Granada, 18071 Granada, Spain.
Sci Rep. 2015 Feb 2;5:8182. doi: 10.1038/srep08182.
Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic "nested" structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm--similar in spirit to Google's PageRank but with a built-in non-linearity--here we propose a method which--by exploiting their nested architecture--allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.
理解生态网络的结构细微之处被认为能赋予它们更高的稳定性和稳健性,这是一个极具相关性的课题。互惠相互作用已得到大量研究,其相应的二分网络,如植物 - 传粉者网络,据报道呈现出一种特征性的“嵌套”结构。在评估灭绝风险和可能的级联效应时,评估互惠网络中任何给定物种的重要性是一项关键任务。受最近引入的一种算法启发——其理念与谷歌的网页排名类似,但具有内置的非线性——在此我们提出一种方法,该方法通过利用互惠网络的嵌套结构,使我们能够得出物种在互惠网络中重要性的合理排名。这种方法明显优于其他现有的排名方案,并且对于生态系统管理和生物多样性保护可能非常有用,在这些领域需要就明确保护生态系统的哪些方面做出决策。