Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK.
Glob Chang Biol. 2015 Jun;21(6):2283-95. doi: 10.1111/gcb.12859. Epub 2015 Mar 20.
Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.
了解光合作用、净初级生产力和森林生态系统生长之间的关系是理解这些生态系统如何应对全球人为变化的关键,但这些组成部分之间的联系很少被详细探讨。我们首次全面描述了具有季节性水分亏缺和土壤肥力梯度的低地亚马孙森林的生产力、呼吸作用和碳分配。利用迄今为止收集到的最大数据集,在三个国家的十个地点进行了研究,所有地点都采用了标准化方法,我们发现:(i) 总初级生产力 (GPP) 与季节性水分亏缺之间存在简单关系,但 (ii) 由于碳利用效率 (CUE) 的同时变化,GPP 的站点间差异几乎没有能力解释净初级生产力 (NPP) 或生长的站点间空间差异,相反,热带森林的木质生长速率是其生产力的一个很差的替代物。此外,(iii) 生物量的空间模式更多地受滞留时间(即树木死亡率)的模式驱动,而不是生产力或树木生长的空间变化。目前关于全球大气变化预测情景下热带森林碳循环的理论和模型可以受益于超越对 GPP 的关注。通过提高我们对碳利用效率 (CUE)、NPP 分配和生物量周转时间等理解不足的过程的理解,我们可以提供更完整和机制性的方法来联系气候和热带森林碳循环。