Suppr超能文献

动态全球植被模型能否捕捉到亚马逊流域碳通量的季节性?一项数据-模型对比研究。

Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.

机构信息

Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia.

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.

出版信息

Glob Chang Biol. 2017 Jan;23(1):191-208. doi: 10.1111/gcb.13442. Epub 2016 Aug 29.

Abstract

To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of other fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, 'soil water stress' and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (R ) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and R consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.

摘要

要想有信心地预测森林对长期气候变化的响应,就需要成功地用动态全球植被模型(DGVM)对生态系统对环境驱动因素短期变化的响应进行测试,包括定期的季节性模式。在这里,我们使用了巴西通量网络中的四个森林的综合数据集,该数据集涵盖了一系列干燥季节的强度和长度,以确定四种最先进的模型(IBIS、ED2、JULES 和 CLM3.5)对亚马逊热带森林碳交换季节性的模拟程度如何。我们发现,大多数 DGVM 对总初级生产力(GPP)、光合能力(Pc)以及其他通量和库的年周期都表现不佳。模型模拟了赤道亚马逊(马瑙斯 K34、圣塔伦 K67 和卡西亚万纳 CAX)的 GPP 一致的干燥季节下降;这与观测到的 GPP 增加形成对比。模型模拟的干燥季节 GPP 减少是由外部环境因素“土壤水分胁迫”驱动的,因此是由恒定或减少的光合基础设施(Pc)驱动的,而观测到的干燥季节 GPP 则是由内部生物(叶片萌发和脱落以及增加的 Pc)和环境(入射辐射)原因共同作用的结果。此外,我们发现模型通常高估了赤道地区观测到的季节性净生态系统交换(NEE)和呼吸(R)。相比之下,亚马逊南部的一个森林(Jarú RJA)的 GPP 和 R 在干燥季节均呈下降趋势,与大多数 DGVM 模拟结果一致。虽然水限制在模型中得到了体现,并且是南亚马逊地区季节性光合作用的主要驱动因素,但内部生物物理过程的变化、光能捕获适应(例如,叶面积指数(LAI)的变化以及与叶片动态相关的叶片水平同化率的增加)以及叶片和木材之间的分配滞后,主导了赤道亚马逊的碳通量动态,而目前的模型公式中缺乏或不存在这些因素。要正确模拟热带森林的通量季节性,需要在未来的模型开发中更好地理解和纳入内部生物物理机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验