School of Forest Resources & Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA.
Glob Chang Biol. 2015 Jun;21(6):2111-21. doi: 10.1111/gcb.12860. Epub 2015 Mar 6.
Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most powerful and urgent way forward in order to improve our understanding of tropical forest responses to climate change.
尽管热带雨林仅占地球陆地表面的一小部分,但它们与大气交换的二氧化碳量超过了地球上任何其他生物群落,因此在全球气候中发挥了不成比例的作用。在未来 20 年内,热带地区将经历前所未有的升温,但对于它们对这种即将发生的气候变化的潜在反应,存在极高的不确定性。在这里,我们根据资金和后勤方面的限制,优先考虑研究方法,以解决有关热带森林功能的主要不确定性问题,并提高地球系统模型的预测能力。我们研究了热带纬度的整体模型不确定性,并探讨了大规模操纵性野外实验所固有的科学利益和不可避免的权衡。通过对耦合模式比较计划第五阶段的分析,我们发现,热带地区模型预测的净生态系统生产力的变异性几乎是其他任何纬度的 3 倍。通过对最新文献的回顾,我们得出结论,操纵性变暖实验对于准确预测未来热带森林的碳平衡至关重要,我们进一步建议建立一个网络,涵盖降水、土壤质量、植物类型和/或土地利用变化梯度的可比研究。我们为长期、单因素变暖实验提供了论据,这些实验纳入了最具生物地球化学活性的生态系统成分(即叶子、根系、土壤微生物)的变暖。应该优先考虑对潜在机制的假设检验,同时还要改进模型参数化和约束条件。没有一个单一的热带雨林可以代表所有的热带雨林;因此,对于定位大规模操纵性实验而言,后勤可行性应该是最重要的考虑因素。最重要的是,我们提倡多方面的研究计划,并为我们认为最有力和紧迫的前进方向提供论据,以提高我们对热带森林对气候变化的反应的理解。