Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY, USA.
International Institute of Tropical Forestry, United States Department of Agriculture Forest Service, Río Piedras, Puerto Rico.
Glob Chang Biol. 2018 Jan;24(1):e213-e232. doi: 10.1111/gcb.13863. Epub 2017 Sep 21.
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.
热带雨林在全球碳和水循环中起着至关重要的作用。预计未来几十年热带地区的气候将迅速变化,在更温暖和干燥的气候条件下,热带雨林可能成为碳的净源而不是汇。然而,我们对热带森林对气候变化的响应和反馈的理解非常有限。模拟气候变化对热带森林碳通量影响的努力尚未达成共识。在这里,我们使用生态系统动态模型(ED2)来预测波多黎各热带雨林在现实气候变化情景下的碳通量。我们使用预测生态系统分析器工作流使用特定物种的树木生理数据对 ED2 进行参数化,并根据五个未来气候情景预测该生态系统的命运。该模型成功地捕捉到了这个热带森林的年际动态变化。模型预测与包括地上生物量、树木直径生长、树木大小类分布和叶面积指数在内的广泛指标的观测值非常吻合。在未来变暖变干的气候情景下,模型预测碳储存和树木生长减少,同时森林群落组成和结构发生重大变化。这种快速的气候变化导致森林从碳汇转变为碳源。生长呼吸和根系分配参数是模型生物量预测不确定性的最高组成部分,这突出了在未来数据收集过程中需要针对这些过程的必要性。我们的研究首次努力依赖贝叶斯模型校准和综合来阐明驱动热带森林对气候变化响应不确定性的关键生理参数。我们提出了一种新的模型-数据综合方法,可以大大降低我们模拟热带森林对未来气候响应能力的不确定性。