Suppr超能文献

PLNseq:一种用于高通量匹配RNA测序读数计数数据的多元泊松对数正态分布。

PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data.

作者信息

Zhang Hong, Xu Jinfeng, Jiang Ning, Hu Xiaohua, Luo Zewei

机构信息

Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, China.

出版信息

Stat Med. 2015 Apr 30;34(9):1577-89. doi: 10.1002/sim.6449. Epub 2015 Jan 30.

Abstract

High-throughput RNA-sequencing (RNA-seq) technology provides an attractive platform for gene expression analysis. In many experimental settings, RNA-seq read counts are measured from matched samples or taken from the same subject under multiple treatment conditions. The induced correlation therefore should be evaluated and taken into account in deriving tests of differential expression. We proposed a novel method 'PLNseq', which uses a multivariate Poisson lognormal distribution to model matched read count data. The correlation is directly modeled through Gaussian random effects, and inferences are made by likelihood methods. A three-stage numerical algorithm is developed to estimate unknown parameters and conduct differential expression analysis. Results using simulated data demonstrate that our method performs reasonably well in terms of parameter estimation, DE analysis power, and robustness. PLNseq also has better control of FDRs than the benchmarks edgeR and DESeq2 in the situations where the correlation is different across the genes but can still be accurately estimated. Furthermore, direct evaluation of correlation through PLNseq enables us to develop a new and more powerful test for DE analysis. Application to a lung cancer study is provided to illustrate the practical utilities of our method. An R package implementing the method is also publicly available.

摘要

高通量RNA测序(RNA-seq)技术为基因表达分析提供了一个有吸引力的平台。在许多实验设置中,RNA-seq读数计数是从匹配样本中测量得到的,或者是在多种处理条件下取自同一受试者。因此,在推导差异表达检验时,应该评估并考虑这种诱导相关性。我们提出了一种新方法“PLNseq”,它使用多元泊松对数正态分布对匹配的读数计数数据进行建模。通过高斯随机效应直接对相关性进行建模,并通过似然方法进行推断。开发了一种三阶段数值算法来估计未知参数并进行差异表达分析。使用模拟数据的结果表明,我们的方法在参数估计、差异表达分析能力和稳健性方面表现相当不错。在基因间相关性不同但仍可准确估计的情况下,PLNseq对错误发现率(FDR)的控制也比基准方法edgeR和DESeq2更好。此外,通过PLNseq直接评估相关性使我们能够开发一种用于差异表达分析的新的、更强大的检验方法。提供了对一项肺癌研究的应用,以说明我们方法的实际效用。一个实现该方法的R包也已公开可用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验