Suppr超能文献

组织床内淋巴管的无标记光学成像。

Label-free optical imaging of lymphatic vessels within tissue beds .

作者信息

Yousefi Siavash, Zhi Zhongwei, Wang Ruikang K

机构信息

Bioengineering Department, University of Washington, Seattle, WA 98195 USA.

Bioengineering and Ophthalmology Department, University of Washington, Seattle, WA 98195 USA.

出版信息

IEEE J Sel Top Quantum Electron. 2014 Mar-Apr;20(2):6800510. doi: 10.1109/JSTQE.2013.2278073.

Abstract

Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis.

摘要

淋巴管是脊椎动物循环系统的一部分,它维持组织液稳态,并引流多余的液体和不易回流到静脉系统的大细胞。由于缺乏非侵入性监测工具,淋巴管被称为被遗忘的循环系统。然而,淋巴系统在癌症和炎症等疾病中起着重要作用。在本文中,我们首先简要回顾当前现有的淋巴管成像方法,主要涉及染料/靶向细胞注射。然后,我们展示了光学相干断层扫描(OCT)在淋巴管和淋巴结无标记非侵入性体内成像方面的能力。与其他成像方式相比,使用OCT的优势之一在于其能够评估无标记的血流灌注,这种灌注可以与淋巴管同时观察到,以便对组织床内的微循环系统进行成像。对包括血管和淋巴管在内的微循环系统进行成像,可用于对一些关键疾病(如炎症、恶性肿瘤血管生成和转移)的成像以及更好地理解其病理机制和治疗技术的发展。

相似文献

1
Label-free optical imaging of lymphatic vessels within tissue beds .
IEEE J Sel Top Quantum Electron. 2014 Mar-Apr;20(2):6800510. doi: 10.1109/JSTQE.2013.2278073.
4
label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography.
Biomed Opt Express. 2016 Nov 2;7(12):4886-4898. doi: 10.1364/BOE.7.004886. eCollection 2016 Dec 1.
6
Lymphatic vessels of the eye - old questions - new insights.
Ann Anat. 2019 Jan;221:1-16. doi: 10.1016/j.aanat.2018.08.004. Epub 2018 Sep 18.
8
Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography.
Lasers Surg Med. 2015 Oct;47(8):669-76. doi: 10.1002/lsm.22387. Epub 2015 Jul 29.
9
Lymph vessels visualization from optical coherence tomography data using depth-resolved attenuation coefficient calculation.
J Biophotonics. 2021 Sep;14(9):e202100055. doi: 10.1002/jbio.202100055. Epub 2021 Jun 17.

引用本文的文献

1
Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice.
Dev Cell. 2024 Feb 26;59(4):496-516.e6. doi: 10.1016/j.devcel.2023.12.017. Epub 2024 Jan 15.
3
Hyaluronan Derived From the Limbus is a Key Regulator of Corneal Lymphangiogenesis.
Invest Ophthalmol Vis Sci. 2019 Mar 1;60(4):1050-1062. doi: 10.1167/iovs.18-25920.
4
Theranostic Probes for Targeting Tumor Microenvironment: An Overview.
Int J Mol Sci. 2017 May 11;18(5):1036. doi: 10.3390/ijms18051036.
6
Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging.
Front Oncol. 2017 Jan 31;7:3. doi: 10.3389/fonc.2017.00003. eCollection 2017.
7
OCT-based label-free in vivo lymphangiography within human skin and areola.
Sci Rep. 2016 Feb 19;6:21122. doi: 10.1038/srep21122.
9
Potential use of OCT-based microangiography in clinical dermatology.
Skin Res Technol. 2016 May;22(2):238-246. doi: 10.1111/srt.12255. Epub 2015 Sep 3.
10
Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing.
Biomed Opt Express. 2015 May 6;6(6):1977-89. doi: 10.1364/BOE.6.001977. eCollection 2015 Jun 1.

本文引用的文献

2
Molecular mechanisms and imaging of lymphatic metastasis.
Exp Cell Res. 2013 Jul 1;319(11):1611-7. doi: 10.1016/j.yexcr.2013.03.009. Epub 2013 Mar 13.
4
An important role of blood and lymphatic vessels in inflammation and allergy.
J Allergy (Cairo). 2013;2013:672381. doi: 10.1155/2013/672381. Epub 2013 Jan 31.
5
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo.
Nat Med. 2012 Aug;18(8):1297-1302. doi: 10.1038/nm.2823. Epub 2012 Jul 15.
6
Label free in vivo laser speckle imaging of blood and lymph vessels.
J Biomed Opt. 2012 May;17(5):050502. doi: 10.1117/1.JBO.17.5.050502.
7
In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6223-8. doi: 10.1073/pnas.1115542109. Epub 2012 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验