Weir Keiko, Blanquie Oriane, Kilb Werner, Luhmann Heiko J, Sinning Anne
Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
Front Cell Neurosci. 2015 Jan 14;8:460. doi: 10.3389/fncel.2014.00460. eCollection 2014.
Primary neuronal cultures share many typical features with the in vivo situation, including similarities in distinct electrical activity patterns and synaptic network interactions. Here, we use multi-electrode array (MEA) recordings from spontaneously active cultures of wildtype and glutamic acid decarboxylase 67 (GAD67)-green fluorescent protein (GFP) transgenic mice to evaluate which spike parameters differ between GABAergic interneurons and principal, putatively glutamatergic neurons. To analyze this question we combine MEA recordings with optical imaging in sparse cortical cultures to assign individual spikes to visually-identified single neurons. In our culture system, excitatory and inhibitory neurons are present at a similar ratio as described in vivo, and spike waveform characteristics and firing patterns are fully developed after 2 weeks in vitro. Spike amplitude, but not other spike waveform parameters, correlated with the distance between the recording electrode and the location of the assigned neuron's soma. Cluster analysis of spike waveform properties revealed no particular cell population that may be assigned to putative inhibitory or excitatory neurons. Moreover, experiments in primary cultures from transgenic GAD67-GFP mice, which allow optical identification of GABAergic interneurons and thus unambiguous assignment of extracellular signals, did not reveal any significant difference in spike timing and spike waveform parameters between inhibitory and excitatory neurons. Despite of our detailed characterization of spike waveform and temporal spiking properties we could not identify an unequivocal electrical parameter to discriminate between individual excitatory and inhibitory neurons in vitro. Our data suggest that under in vitro conditions cellular classifications of single neurons on the basis of their extracellular firing properties should be treated with caution.
原代神经元培养物与体内情况有许多共同的典型特征,包括不同电活动模式和突触网络相互作用的相似性。在这里,我们使用来自野生型和谷氨酸脱羧酶67(GAD67)-绿色荧光蛋白(GFP)转基因小鼠自发活动培养物的多电极阵列(MEA)记录,以评估GABA能中间神经元和主要的、推测为谷氨酸能神经元之间哪些放电参数存在差异。为了分析这个问题,我们将MEA记录与稀疏皮质培养物中的光学成像相结合,将单个放电分配给视觉识别的单个神经元。在我们的培养系统中,兴奋性和抑制性神经元的比例与体内描述的相似,并且在体外培养2周后放电波形特征和放电模式已完全形成。放电幅度与记录电极和指定神经元胞体位置之间的距离相关,而其他放电波形参数则不然。对放电波形特性的聚类分析未发现可归为推测的抑制性或兴奋性神经元的特定细胞群体。此外,在转基因GAD67-GFP小鼠的原代培养物中进行的实验,该实验允许对GABA能中间神经元进行光学识别,从而明确分配细胞外信号,但未发现抑制性和兴奋性神经元之间在放电时间和放电波形参数上有任何显著差异。尽管我们对放电波形和放电时间特性进行了详细表征,但我们无法确定一个明确的电参数来在体外区分单个兴奋性和抑制性神经元。我们的数据表明,在体外条件下,基于单个神经元的细胞外放电特性进行细胞分类时应谨慎对待。