Suppr超能文献

通过钙成像和深度学习评估化学物质对人类神经细胞的影响。

Evaluating chemical effects on human neural cells through calcium imaging and deep learning.

作者信息

Ku Ray Yueh, Bansal Ankush, Dutta Dipankar J, Yamashita Satoshi, Peloquin John, Vu Diana N, Shen Yubing, Uchida Tomoki, Torii Masaaki, Hashimoto-Torii Kazue

机构信息

Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20010, USA.

Novel Business Development Department, Suntory Global Innovation Center Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.

出版信息

iScience. 2024 Nov 1;27(12):111298. doi: 10.1016/j.isci.2024.111298. eCollection 2024 Dec 20.

Abstract

New substances intended for human consumption must undergo extensive preclinical safety pharmacology testing prior to approval. These tests encompass the evaluation of effects on the central nervous system, which is highly sensitive to chemical substances. With the growing understanding of the species-specific characteristics of human neural cells and advancements in machine learning technology, the development of effective and efficient methods for the initial screening of chemical effects on human neural function using machine learning platforms is anticipated. In this study, we employed a deep learning model to analyze calcium dynamics in human-induced pluripotent stem cell-derived neural progenitor cells, which were exposed to various concentrations of four representative chemicals. We report that this approach offers a reliable and concise method for quantitatively classifying the effects of chemical exposures and predicting potential harm to human neural cells.

摘要

供人类食用的新物质在获批之前必须经过广泛的临床前安全药理学测试。这些测试包括对中枢神经系统影响的评估,中枢神经系统对化学物质高度敏感。随着对人类神经细胞物种特异性特征的认识不断加深以及机器学习技术的进步,预计将开发出利用机器学习平台对化学物质对人类神经功能的影响进行初步筛选的有效且高效的方法。在本研究中,我们使用深度学习模型分析了人诱导多能干细胞衍生的神经祖细胞中的钙动力学,这些细胞暴露于四种代表性化学物质的不同浓度下。我们报告称,这种方法为定量分类化学物质暴露的影响以及预测对人类神经细胞的潜在危害提供了一种可靠且简洁的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8323/11616611/80c1c596fc1b/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验