Suppr超能文献

能够进行电极氧化的海洋沉积物微生物作为化能无机不溶性底物代谢的替代物。

Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism.

作者信息

Rowe Annette R, Chellamuthu Prithiviraj, Lam Bonita, Okamoto Akihiro, Nealson Kenneth H

机构信息

Department of Earth Sciences, University of Southern California, Los Angeles Los Angeles, CA, USA.

Department of Molecular and Computational Biology, University of Southern California, Los Angeles Los Angeles, CA, USA.

出版信息

Front Microbiol. 2015 Jan 14;5:784. doi: 10.3389/fmicb.2014.00784. eCollection 2014.

Abstract

Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested -50 to -400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to -295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications.

摘要

关于沉积物中生物矿物氧化的重要性和/或机制,人们了解甚少,部分原因是培养矿物氧化微生物存在困难。我们证明,电化学富集是分离能够从不溶性矿物获取电子的微生物的一种可行方法。为此,我们构建了沉积物微观世界,并在各种受控的氧化还原电位下培养电极。在培养过程中观察到负电流产生,并且随着氧化还原电位的降低而增加(测试范围为相对于Ag/AgCl为-50至-400 mV)。在无沉积物的二次富集中,电极相关生物量对作为终端电子受体的硝酸盐和三价铁的添加有反应。从电极生物量衍生的元素硫、元素铁和无定形硫化铁富集物显示出硫或铁氧化的产物。从这些富集中分离出的微生物属于γ-变形菌纲的嗜盐单胞菌属、海洋栖热袍菌属、海杆菌属和假单胞菌属,以及α-变形菌纲的海螺旋菌属和硫棍菌属。计时电流法数据表明,在没有替代电子源的情况下,这些分离物能持续氧化电极。循环伏安法表明,主导电子转移模式或与电极的相互作用(即生物膜、浮游或介质促进)存在变异性,并且每种微生物观察到的中点电位范围很广(相对于Ag/AgCl为8至-295 mV)。在一种沉积物和一种氧化还原条件下观察到的细胞外电子转移机制的多样性,说明了这些相互作用的潜在重要性和丰富性。这种方法有望增进我们对微生物与矿物相互作用的程度和多样性的理解,以及增加可用于电化学应用的微生物库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17af/4294203/ee6611ef99f3/fmicb-05-00784-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验