Suppr超能文献

电化学研究揭示微生物太阳能电池中的非光合生物阴极催化剂。

Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst.

机构信息

Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.

出版信息

Appl Environ Microbiol. 2013 Jul;79(13):3933-42. doi: 10.1128/AEM.00431-13. Epub 2013 Apr 19.

Abstract

Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawater-based MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocathodes, cyclic voltammetry reveals a catalytic-current-potential dependency consistent with heterogeneous electron transfer mediated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria, most closely related to Marinobacter spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a multimicrobe-thick biofilm (up to 8.2 μm), and does not lose catalytic activity after exchanges of the reactor medium. Moreover, the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and one that catalyzes reduction of O2 by the cathode, where the former partially inhibits the latter. The relationship between the two communities must be further explored to fully realize the potential for MSC applications.

摘要

微生物太阳能电池(MSCs)是通过光合作用反应自生氧化剂和/或燃料的微生物燃料电池(MFCs)。在这里,我们介绍了从先前描述的基于沉积物/海水的 MSCs 的生物阴极接种的基于沉积物/海水的 MSCs 的生物阴极的电化学分析和生物膜 16S rRNA 基因谱分析。电化学分析表明,对于这些第二代 MSC 生物阴极,如果在生长过程中提供光照,则催化活性随时间衰减,而如果在黑暗中生长,则相对稳定。对于光照和黑暗 MSC 生物阴极,循环伏安法揭示了与不溶性微生物氧化还原辅因子介导的异质电子转移一致的催化电流-电位依赖性,该依赖性在使用三电极配置富集黑暗 MSC 生物阴极后得以保留。16S rRNA 基因谱分析显示,γ变形菌门,与 Marinobacter spp. 最密切相关,在富集的生物阴极中占主导地位。富集的生物阴极生物膜易于在石墨阴极上培养,形成多微生物厚的生物膜(高达 8.2 μm),并且在更换反应器介质后不会失去催化活性。此外,该联合体可以在仅提供无机碳作为碳源的阴极上生长,这可能被用于提议的生物电化学系统,用于从二氧化碳电化学合成有机碳。这些结果支持了这样一种方案,即在 MSC 生物阴极中形成两种不同的生物体群落:一种是光合作用活跃的,另一种是阴极还原 O2 的,前者部分抑制后者。必须进一步探索这两个群落之间的关系,以充分实现 MSC 应用的潜力。

相似文献

1
Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst.
Appl Environ Microbiol. 2013 Jul;79(13):3933-42. doi: 10.1128/AEM.00431-13. Epub 2013 Apr 19.
2
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes.
Appl Environ Microbiol. 2012 Aug;78(15):5212-9. doi: 10.1128/AEM.00480-12. Epub 2012 May 18.
3
Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
Appl Environ Microbiol. 2018 Jan 31;84(4). doi: 10.1128/AEM.02242-17. Print 2018 Feb 15.
5
Monophyletic group of unclassified γ-Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode.
Bioelectrochemistry. 2015 Dec;106(Pt A):167-76. doi: 10.1016/j.bioelechem.2015.04.004. Epub 2015 Apr 8.
6
Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.
Water Res. 2014 May 1;54:137-48. doi: 10.1016/j.watres.2014.01.052. Epub 2014 Feb 5.
7
Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
J Biotechnol. 2013 Dec;168(4):478-85. doi: 10.1016/j.jbiotec.2013.10.001. Epub 2013 Oct 12.
8
A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells.
Bioelectrochemistry. 2018 Apr;120:18-26. doi: 10.1016/j.bioelechem.2017.11.005. Epub 2017 Nov 11.
9
Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.
Bioresour Technol. 2015 Mar;180:185-91. doi: 10.1016/j.biortech.2014.12.105. Epub 2015 Jan 8.

引用本文的文献

1
Electroactive biofilms: how microbial electron transfer enables bioelectrochemical applications.
J Ind Microbiol Biotechnol. 2022 Jul 30;49(4). doi: 10.1093/jimb/kuac012.
2
Catalysis of the electrochemical oxygen reduction reaction (ORR) by animal and human cells.
PLoS One. 2021 May 5;16(5):e0251273. doi: 10.1371/journal.pone.0251273. eCollection 2021.
3
Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):863-876. doi: 10.1007/s10295-020-02309-0. Epub 2020 Sep 15.
7
Complete Genome Sequence of R2C4, Isolated from a Self-Regenerating Biocathode Consortium.
Microbiol Resour Announc. 2019 Sep 5;8(36):e00833-19. doi: 10.1128/MRA.00833-19.
8
Electroactive Bacteria Associated With Stainless Steel Ennoblement in Seawater.
Front Microbiol. 2019 Feb 7;10:170. doi: 10.3389/fmicb.2019.00170. eCollection 2019.
9
Electrode Colonization by the Feammox Bacterium sp. Strain A6.
Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.02029-18. Print 2018 Dec 15.
10
Relative abundance of 'Candidatus Tenderia electrophaga' is linked to cathodic current in an aerobic biocathode community.
Microb Biotechnol. 2018 Jan;11(1):98-111. doi: 10.1111/1751-7915.12757. Epub 2017 Jul 11.

本文引用的文献

1
Electrosynthesis of commodity chemicals by an autotrophic microbial community.
Appl Environ Microbiol. 2012 Dec;78(23):8412-20. doi: 10.1128/AEM.02401-12. Epub 2012 Sep 21.
2
Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review.
ChemSusChem. 2012 Jun;5(6):975-87. doi: 10.1002/cssc.201100836. Epub 2012 May 21.
3
On electron transport through Geobacter biofilms.
ChemSusChem. 2012 Jun;5(6):1099-105. doi: 10.1002/cssc.201100748. Epub 2012 May 21.
4
Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth.
ChemSusChem. 2012 Jun;5(6):1106-18. doi: 10.1002/cssc.201100737. Epub 2012 May 13.
5
The iron-oxidizing proteobacteria.
Microbiology (Reading). 2011 Jun;157(Pt 6):1551-1564. doi: 10.1099/mic.0.045344-0. Epub 2011 Apr 21.
6
Genomic potential of Marinobacter aquaeolei, a biogeochemical "opportunitroph".
Appl Environ Microbiol. 2011 Apr;77(8):2763-71. doi: 10.1128/AEM.01866-10. Epub 2011 Feb 18.
7
Microbial solar cells: applying photosynthetic and electrochemically active organisms.
Trends Biotechnol. 2011 Jan;29(1):41-9. doi: 10.1016/j.tibtech.2010.10.001. Epub 2010 Nov 8.
9
Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater.
Bioresour Technol. 2011 Jan;102(1):304-11. doi: 10.1016/j.biortech.2010.06.157. Epub 2010 Jul 31.
10
Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells.
Bioresour Technol. 2011 Jan;102(1):316-23. doi: 10.1016/j.biortech.2010.06.096. Epub 2010 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验