Neumüller Klaus G, de Souza Adriana Carvalho, van Rijn Jozef Hj, Streekstra Hugo, Gruppen Harry, Schols Henk A
DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands ; Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands.
Biotechnol Biofuels. 2015 Jan 22;8(1):7. doi: 10.1186/s13068-014-0187-6. eCollection 2015.
Acetylation of the xylan backbone restricts the hydrolysis of plant poly- and oligosaccharides by hemicellulolytic enzyme preparations to constituent monosaccharides. The positional preferences and deacetylation efficiencies of acetyl esterases from seven different carbohydrate esterase (CE) families towards different acetylated xylopyranosyl units (Xylp) - as present in 4-O-methyl-glucuronic acid (MeGlcA)-substituted xylo-oligosaccharides (AcUXOS) derived from Eucalyptus globulus - were monitored by (1)H NMR, using common conditions for biofuel production (pH 5.0, 50°C).
Differences were observed regarding the hydrolysis of 2-O, 3-O, and 2,3-di-O acetylated Xylp and 3-O acetylated Xylp 2-O substituted with MeGlcA. The acetyl esterases tested could be categorized in three groups having activities towards (i) 2-O and 3-O acetylated Xylp, (ii) 2-O, 3-O, and 2,3-di-O acetylated Xylp, and (iii) 2-O, 3-O, and 2,3-di-O acetylated Xylp, as well as 3-O acetylated Xylp 2-O substituted with MeGlcA at the non-reducing end. A high deacetylation efficiency of up to 83% was observed for CE5 and CE1 acetyl esterases. Positional preferences were observed towards 2,3-di-O acetylated Xylp (TeCE1, AnCE5, and OsCE6) or 3-O acetylated Xylp (CtCE4).
Different positional preferences, deacetylation efficiencies, and initial deacetylation rates towards 2-O, 3-O, and 2,3-di-O acetylated Xylp and 3-O acetylated Xylp 2-O substituted with MeGlcA were demonstrated for acetyl esterases from different CE families at pH 5.0 and 50°C. The data allow the design of optimal, deacetylating hemicellulolytic enzyme mixtures for the hydrolysis of non-alkaline-pretreated bioenergy feedstocks.
木聚糖主链的乙酰化作用会限制半纤维素酶制剂将植物多糖和寡糖水解为单糖成分。通过¹H NMR监测了来自七个不同碳水化合物酯酶(CE)家族的乙酰酯酶对不同乙酰化吡喃木糖基单元(Xylp)的位置偏好和脱乙酰化效率,这些Xylp存在于源自蓝桉的4-O-甲基葡萄糖醛酸(MeGlcA)取代的木寡糖(AcUXOS)中,采用生物燃料生产的常用条件(pH 5.0,50°C)。
观察到2-O、3-O和2,3-二-O-乙酰化Xylp以及被MeGlcA 2-O取代的3-O-乙酰化Xylp的水解存在差异。所测试的乙酰酯酶可分为三组,它们对(i)2-O和3-O-乙酰化Xylp、(ii)2-O、3-O和2,3-二-O-乙酰化Xylp、(iii)2-O、3-O和2,3-二-O-乙酰化Xylp以及非还原端被MeGlcA 2-O取代的3-O-乙酰化Xylp具有活性。CE5和CE1乙酰酯酶的脱乙酰化效率高达83%。观察到对2,3-二-O-乙酰化Xylp(TeCE1、AnCE5和OsCE6)或3-O-乙酰化Xylp(CtCE4)的位置偏好。
在pH 5.0和50°C条件下,不同CE家族的乙酰酯酶对2-O、3-O和2,3-二-O-乙酰化Xylp以及被MeGlcA 2-O取代的3-O-乙酰化Xylp表现出不同的位置偏好、脱乙酰化效率和初始脱乙酰化速率。这些数据有助于设计用于水解非碱性预处理生物能源原料的最佳脱乙酰化半纤维素酶混合物。